Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2015, Article ID 982412, 19 pages
http://dx.doi.org/10.1155/2015/982412
Review Article

Ornamental Exterior versus Therapeutic Interior of Madagascar Periwinkle (Catharanthus roseus): The Two Faces of a Versatile Herb

1Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
2Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
3School of Life and Environmental Sciences, Faculty of Science Engineering & Built Environment, Deakin University, Melbourne, VIC 3220, Australia
4Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia
5Institute of Bioscience, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor DE, Malaysia

Received 3 July 2014; Accepted 29 September 2014

Academic Editor: Da C. Hao

Copyright © 2015 Naghmeh Nejat et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Faheem, S. Singh, B. S. Tanwer, M. Khan, and A. Shahzad, “In vitro Regeneration of multiplication shoots in Catharanthus roseus—an important medicinal plant,” Advances in Applied Science Research, vol. 2, pp. 208–213, 2011. View at Google Scholar
  2. F. E. Koehn and G. T. Carter, “The evolving role of natural products in drug discovery,” Nature Reviews Drug Discovery, vol. 4, no. 3, pp. 206–220, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. Valdiani, M. A. Kadir, S. G. Tan, D. Talei, M. P. Abdullah, and S. Nikzad, “Nain-e havandi Andrographis paniculata present yesterday, absent today: a plenary review on underutilized herb of Iran's pharmaceutical plants,” Molecular Biology Reports, vol. 39, no. 5, pp. 5409–5424, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. J. Facchini, “Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications,” Annual Review of Plant Biology, vol. 52, pp. 29–66, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. P. J. Facchini and V. de Luca, “Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants,” The Plant Journal, vol. 54, no. 4, pp. 763–784, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. Kohlmüzer, “Alkaloids of Catharanthus roseus (L.) G. Don-a new group of biologically active compounds,” Postepy Biochemii, vol. 14, no. 2, pp. 209–232, 1968. View at Google Scholar
  7. J. Roepke, V. Salim, M. Wu et al., “Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 34, pp. 15287–15292, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. D. Whiting, A. O'Connor, J. Jones, L. McMulkin, and L. Potts, “Taxonomic Classification,” CMG GardenNotes, vol. 122, pp. 1–8, 2011. View at Google Scholar
  9. A. C. Plaizier, “A revision of Catharanthus roseus (L.) G. Don (Apocynaceae),” Mededelingen Landbouwhogeschool, vol. 81, no. 9, pp. 1–12, 1981. View at Google Scholar
  10. M. A. van Bergen, “Revision of Catharanthus roseus G. Don. series of revisions of Apocynaceae XLI,” Agricultural University of Wageningen Papers, vol. 96, no. 3, pp. 9–46, 1996. View at Google Scholar · View at Scopus
  11. IPNI (The International Plant Names Index), 2008, http://www.ipni.org/.
  12. Royal Botanic Gardens, Kew Resource Page, http://www.kew.org./data/subjects.html.
  13. USDA Plant Data Base, http://plants.usda.gov/.
  14. J. Aslam, S. H. Khan, Z. H. Siddiqui et al., “Catharanthus roseus (L.) G. Don. an important drugs: it’s applications and production,” Pharmacie Globale, vol. 4, no. 12, pp. 1–16, 2010. View at Google Scholar
  15. S. Chaudhary, V. Sharma, M. Prasad et al., “Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (LLI) in periwinkle Catharanthus roseus,” Scientia Horticulturae, vol. 129, no. 1, pp. 142–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Sreevalli, R. N. Kulkarni, and K. Baskaran, “Inheritance of flower color in periwinkle: orange-red corolla and white eye,” Journal of Heredity, vol. 93, no. 1, pp. 55–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. P. Joy, J. Thomas, S. Mathew, and B. P. Skaria, Medicinal Plants, Kerala Agricultural University, 1998.
  18. PROTA, Plant Resources of Tropical Africa. African Ornamentals. Proposals and Examples, PROTA Foundation, Wageningen, The Netherlands, 2011.
  19. B. Łata, “Cultivation, mineral nutrition and seed production of Catharanthus roseus (L.) G. Don in the temperate climate zone,” Phytochemistry Reviews, vol. 6, no. 2-3, pp. 403–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. P. A. Thomas and J. G. Latimer, “Growth of vinca as affected by form of nitrogen, presence of bark, and type of micronutrients,” Journal of Plant Nutrition, vol. 18, pp. 2127–2134, 1996. View at Google Scholar
  21. G. V. A. Balamani and R. S. Rao, “In chromosome number reports LXXIII,” Taxon, vol. 30, pp. 855–856, 1981. View at Google Scholar
  22. M. S. Mendioro, M. Q. D. Diaz, M. T. B. Alcantara, O. J. Hilario, P. Mateo, and R. D. M. Maghirang, “Cytological studies of selected medicinal plants: Euphorbia pulcherrina Willd. Ex Klotz., Moringa oleifera Lam., Catharanthus roseus (L.) Don., and Chrysanthemum indicum Linn,” The Philippine Journal of Science, vol. 134, pp. 31–37, 2005. View at Google Scholar
  23. V. R. Dnyansagar and I. V. Sudhakaran, “Induced tetraploidy in Vinca rosea L,” Cytologia, vol. 35, pp. 227–241, 1970. View at Google Scholar
  24. K.-X. Tang, S.-H. Xing, X.-B. Guo et al., “Induction and flow cytometry identification of tetraploids from seed-derived explants through colchicine treatments in Catharanthus roseus (L.) G. Don,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 793198, 10 pages, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. N. Kulkarni, Y. Sreevalli, K. Baskaran, and S. Kumar, “The mechanism and inheritance of intraflower self-pollination in self-pollinating variant strains of periwinkle,” Plant Breeding, vol. 120, no. 3, pp. 247–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. R. N. Kulkarni, Y. Sreevalli, and K. Baskaran, “Allelic differences at two loci govern different mechanisms of intraflower self-pollination in self-pollinating strains of periwinkle,” Journal of Heredity, vol. 96, no. 1, pp. 71–77, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. N. Kulkarni and K. Baskaran, “From herkogamy to cleistogamy—development of cleistogamy in periwinkle,” Journal of Heredity, vol. 104, no. 1, pp. 140–148, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. Sreevalli, K. Baskaran, R. N. Kulkarni, and S. Kumar, “Further evidence for the absence of automatic and intra-flower self-pollination in periwinkle,” Current Science, vol. 79, no. 12, pp. 1648–1649, 2000. View at Google Scholar · View at Scopus
  29. P. Albers and L. J. G. van der Maesen, “Pollination of Apocynaceae,” Agricultural University Wageningen Papers, vol. 3, pp. 61–81, 1994. View at Google Scholar
  30. M. Sevestre-Rigouzzo, C. Nef-Campa, A. Ghesquière, and H. Chrestin, “Genetic diversity and alkaloid production in Catharanthus roseus, C. trichophyllus and their hybrids,” Euphytica, vol. 66, no. 1-2, pp. 151–159, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. R. van der Heijden, D. I. Jacobs, W. Snoeijer, D. Hallard, and R. Verpoorte, “The Catharanthus alkaloids: pharmacognosy and biotechnology,” Current Medicinal Chemistry, vol. 11, no. 5, pp. 607–628, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Zárate and R. Verpoorte, “Strategies for the genetic modification of the medicinal plant Catharanthus roseus (L.) G. Don,” Phytochemistry Reviews, vol. 6, no. 2-3, pp. 475–491, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Gupta, “Periwinkle-produces anticancer drug,” Indian Farming, vol. 7, pp. 11–13, 1977. View at Google Scholar
  34. S. K. Parrek, S. Singh, V. K. Srivastava, S. Mandal, M. L. Maheswari, and R. Gupta, “Advances in periwinkle cultivation,” Indian Farming, vol. 31, pp. 18–21, 1981. View at Google Scholar
  35. A. Sadowska, G. Obidowska, and M. Szacho-Guchowicz, “Wpływ nawożenia NPK na masę ziela oraz zawartość alkaloidów u Catharanthus roseus (L.) G. Don,” Biuletyn IHAR, vol. 170, pp. 55–63, 1989. View at Google Scholar
  36. M. Shamim, S. R. Voleti, R. L. Misra, and S. P. S. Raghava, “Influence of temperature on seed germination in three ornamental species,” Journal of Ornamental Horticulture, vol. 2, pp. 89–91, 1999. View at Google Scholar
  37. B. R. Rajeswara Rao and M. Singh, “Effect of NPK fertilizers and spacing on periwinkle (Catharanthus roseus) under irrigated and rained conditions,” Herba Hungarica, vol. 29, pp. 1–2, 1990. View at Google Scholar
  38. M. R. Shylaja, M. A. Sankar, G. S. Nair, and K. A. Mercy, “Response of Catharanthus roseus L. (G. Don) to nitrogen, phosphorus and potassium fertilization,” Indian Cocoa, Arecanut and Spices Journal, vol. 20, pp. 83–88, 1996. View at Google Scholar
  39. M. R. Shylaja, A. Ashashankar, and G. S. Nair, “Effect of N, P and K on the leaf alkaloid content in Catharanthus roseus L. (G. Don),” Indian Journal of Horticulture, vol. 46, pp. 192–195, 1998. View at Google Scholar
  40. Y. Sreevalli, R. N. Kulkarni, K. Baskaran, and R. S. Chandrashekara, “Increasing the content of leaf and root alkaloids of high alkaloid content mutants of periwinkle through nitrogen fertilization,” Industrial Crops and Products, vol. 19, no. 2, pp. 191–195, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. Z. Gholamhosseinpour, K. Hemati, H. Dorodian, and Z. Bashir-Sadr, “Effect of nitrogen fertilizer on yield and amount of alkaloids in periwinkle and determination of vinblastine and vincristine by HPLC and TLC,” Plant Sciences Research, vol. 3, pp. 4–9, 2011. View at Publisher · View at Google Scholar
  42. S. Maiti, “Inventory, documentation and status of medicinal plants research in India,” in Medicinal Plants Research in Asia, Volume I: The Framework and Project Workplans, P. A. Batugal, J. Kanniah, S. Y. Lee, and J. T. Oliver, Eds., p. 89, International Genetic Resources Institute-Regional Office for Asia, the Pacific and Oceania (IPGRI-APO), Selangor, Malaysia, 2004. View at Google Scholar
  43. B. K. Jana and B. Varghese, “Effect of mineral nutrition on growth and alkaloid content of Catharanthus roseus,” Indian Agriculture, vol. 40, pp. 93–99, 1996. View at Google Scholar
  44. B. N. Dahatonde, “Effect of non-monetary inputs on the yielding performance of periwinkle (Catharanthus sp.),” Ancient Science of Life, vol. 5, pp. 65–67, 1985. View at Google Scholar
  45. P. P. Khode, P. U. Ghatol, S. A. Bhuyar, D. D. Deo, and V. M. Dhumal, “Performance of Vinca rosea (Catharanthus SPP.) to different fertility and irrigation levels,” Agricultural Science Digest, vol. 20, no. 2, pp. 135–136, 2000. View at Google Scholar
  46. Z. Staszewski, Z. Bodzon, and B. Lata, “Possibilities and limitations of seed production of Catharanthus roseus (L.) G. Don under Polish climatic conditions,” Phytochemistry Reviews, vol. 6, no. 2-3, pp. 397–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. P. A. Thomas, J. Woodward, F. E. Stegelin, and S. V. Pennisi, A Guide for Commercial Production of Vinca. Bulletin 1219, 2009.
  48. R. N. Kulkarni, K. Bhaskaran, R. S. Chandrashekhara et al., “Dhawal-a high alkaloid producing periwinkle plant,” USA Patent 6548746.
  49. S. Kumar, S. P. Rai, S. K. Rai, D. V. Singh, S. Srivastava, and R. K. Mishra, “Plant variety of Catharanthus roseus named ‘lli’,” United States Patent PP18315, 2007.
  50. G. H. Schmelzer and A. Gurib-Fakim, Plant Resources of Tropical Africa: Medicinal Plants, PROTA Foundation, Backhuys, CTA, Wageningen, The Netherlands, 2008.
  51. T. K. Howe and W. E. Waters, “Evaluation of Catharanthus roseus (Vinca) cultivars for the landscape,” in Proceedings of the Florida State Horticultural Society, vol. 107, pp. 404–408, 1994.
  52. W. Snoeijer, “Catharanthus roseus, the Madagascar Periwinkle, a review of its cultivars,” Agricultural University Wageningen Papers, vol. 96, pp. 47–120, 1996. View at Google Scholar
  53. W. Snoeijer, International Register of Catharanthus roseus, Leiden/Amsterdam Centre for Drug Research, Division of Pharmacognosy, Leiden, The Netherlands, 2001.
  54. “USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network-(GRIN),” National Germplasm Resources Laboratory, Beltsville, Md, USA, http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1548027.
  55. USDA, ARS, and National Genetic Resources Program, “Germplasm resources information network—(GRIN),” Online Database, National Germplasm Resources Laboratory, Beltsville, Md, USA, 2012, http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1157360. View at Google Scholar
  56. USDA and ARS, National Genetic Resources Program. Germplasm Resources Information Network—(GRIN). [Online Database], National Germplasm Resources Laboratory, Beltsville, Md, USA, 2012, http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1161274.
  57. USDA, ARS, and National Genetic Resources Program, Germplasm Resources Information Network—(GRIN), National Germplasm Resources Laboratory, Beltsville, Md, USA, May 2012, http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1573079.
  58. M. A. Bhutkar and S. B. Bhise, “Comparative studies on antioxidant properties of Catharanthus rosea and Catharanthus alba,” International Journal of PharmTech Research, vol. 3, no. 3, pp. 1551–1556, 2011. View at Google Scholar · View at Scopus
  59. M. Idrees, M. Naeem, and M. M. A. Khan, “The superiority of cv “rosea” over cv “alba” of periwinkle (Catharanthus roseus L.) in alkaloid production and other physiological attributes,” Turkish Journal of Biology, vol. 34, no. 1, pp. 81–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Kumar, S. Chaudhary, R. Kumari, V. Sharma, and A. Kumar, “Development of improved horticultural genotypes characterized by novel over-flowering inflorescence trait in periwinkle Catharanthus roseus,” Proceedings of the National Academy of Sciences India Section B: Biological Sciences, vol. 82, no. 3, pp. 399–404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. C. A. Jaleel, R. Gopi, G. M. Alagu Lakshmanan, and R. Panneerselvam, “Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don,” Plant Science, vol. 171, no. 2, pp. 271–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. H. A. Curry, “Naturalising the exotic and exoticising the naturalised: horticulture, natural history and the rosy periwinkle,” Environment and History, vol. 18, no. 3, pp. 343–365, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. I.-M. Lee, D. E. Gundersen-Rindal, and A. Bertaccini, “Phytoplasma: ecology and genomic diversity,” Phytopathology, vol. 88, no. 12, pp. 1359–1366, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. S. Jagoueix-Eveillard, F. Tarendeau, K. Guolter, J.-L. Danet, J. M. Bové, and M. Garnier, “Catharanthus roseus genes regulated differentially by mollicute infections,” Molecular Plant-Microbe Interactions, vol. 14, no. 2, pp. 225–233, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. F. D. Andreote, P. T. Lacava, C. S. Gai et al., “Model plants for studying the interaction between Methylobacterium mesophilicum and Xylella fastidiosa,” Canadian Journal of Microbiology, vol. 52, no. 5, pp. 419–426, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. L. Torres, E. Galdeano, D. Docampo, and L. Conci, “Characterization of aster yellows phytoplasma associated with Catharanthus little leaf in Argentina,” Journal of Plant Pathology, vol. 86, no. 3, pp. 209–214, 2004. View at Google Scholar · View at Scopus
  67. O. F. Omar, A. A. Emeran, and J. M. Abass, “Detection of phytoplasma associated with periwinkle virescence in Egypt,” Plant Pathology Journal, vol. 7, no. 1, pp. 92–97, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Chaturvedi, A. K. Tewari, P. P. Upadhyaya, S. K. Prabhuji, and G. P. Rao, “Association of Candidatus phytoplasma asteris with little leaf and phyllody disease of Catharanthus roseus in Eastern Uttar Pradesh, India,” International Journal of Phytomedicines and Related Industries, vol. 1, pp. 103–108, 2009. View at Publisher · View at Google Scholar
  69. Khew KL, R. E. Davis, C. A. Ong, I.-M. Lee, H. J. Su, and M. C. Tsai, “Detection of a Malaysian mycoplasmalike organism (MLO) and its differentiation from other Asian, European, and North American MLOs by use of cloned chromosomal and extra chromosomal MLO DNA probes,” Journal of Plant Protection in the Tropics, vol. 8, pp. 167–180, 1991. View at Google Scholar
  70. N. Nejat, K. Sijam, S. N. A. Abdullah, G. Vadamalai, and M. Dickinson, “Molecular characterization of an aster yellows phytoplasma associated with proliferation of periwinkle in Malaysia,” African Journal of Biotechnology, vol. 9, no. 15, pp. 2305–2315, 2010. View at Google Scholar · View at Scopus
  71. N. K. K. Win and H.-Y. Jung, “The distribution of phytoplasmas in myanmar,” Journal of Phytopathology, vol. 160, no. 3, pp. 139–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  72. I.-M. Lee, D. E. Gundersen-Rindal, R. E. Davis, and I. M. Bartoszyk, “Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences,” International Journal of Systematic Bacteriology, vol. 48, no. 4, pp. 1153–1169, 1998. View at Publisher · View at Google Scholar · View at Scopus
  73. D. E. Gundersen, I.-M. Lee, S. A. Rehner, R. E. Davis, and D. T. Kingsbury, “Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification,” Journal of Bacteriology, vol. 176, no. 17, pp. 5244–5254, 1994. View at Google Scholar · View at Scopus
  74. N. Nejat, K. Sijam, S. N. A. Abdullah, G. Vadamalai, and M. Dickinson, “Phytoplasmas associated with disease of coconut in Malaysia: phylogenetic groups and host plant species,” Plant Pathology, vol. 58, no. 6, pp. 1152–1160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Nejat, G. Vadamalai, and R. E. Davis, “‘Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus),” International Journal of Systematic and Evolutionary Microbiology, vol. 63, no. 2, pp. 540–548, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. R. M. Allen, “Spiroplasma organism found in naturally infected periwinkle,” Citrograph, vol. 60, pp. 428–446, 1975. View at Google Scholar
  77. J. M. Bové, “Stubborn and its natural transmission in the Mediterranean area and the Near East,” FAO Plant Protection Bulletin, vol. 34, pp. 15–23, 1986. View at Google Scholar
  78. N. Nejat, G. Vadamalai, K. Sijam, and M. Dickinson, “First report of Spiroplasma citri (-induced) associated with periwinkle lethal yellows in Southeast Asia,” Plant Disease, vol. 95, no. 10, p. 1312, 2011. View at Publisher · View at Google Scholar
  79. D. D. Shukla, D. S. Teakle, and K. H. Gough, “Periwinkle, a latent host for broad bean wilt and cucumber mosaic viruses in Australia,” Plant Disease, vol. 64, pp. 802–803, 1980. View at Publisher · View at Google Scholar
  80. A. Samad, P. V. Ajayakumar, M. K. Gupta et al., “Natural infection of periwinkle (Catharanthus roseus) with Cucumber mosaic virus, subgroup IB,” Australasian Plant Disease Notes, vol. 3, pp. 30–34, 2008. View at Publisher · View at Google Scholar
  81. M. Mazidah, K. Yusoff, H. Habibuddin, Y. H. Tan, and W. H. Lau, “Characterization of cucumber mosaic virus (CMV) causing mosaic symptom on Catharanthus roseus (L.) G. Don in Malaysia,” Pertanika Journal of Tropical Agricultural Science, vol. 35, no. 1, pp. 41–53, 2012. View at Google Scholar · View at Scopus
  82. J. F. Dastur, “Phytophthora on Vinca rosea,” in Memoirs of the Department of Agriculture in India, vol. 8 of Botanical Series, pp. 233–242, 1916. View at Google Scholar
  83. A. R. Chase, “Phytophthora aerial blight of vinca and other bedding plants,” Western Connection Turf & Ornamentals, vol. 1, pp. 1–4, 1999. View at Google Scholar
  84. R. Keim, “Foliage blight of perwinkle in southern California,” Plant Disease Report, vol. 61, pp. 182–184, 1977. View at Google Scholar
  85. R. T. McMillan Jr. and J. F. Garofalo, “Phytophthora parasitica wilt of new cultivars of Catharanthus roseus,” Proceedings of the Florida State Horticultural Society, vol. 117, pp. 316–317, 2004. View at Google Scholar
  86. W. C. Chung, J. W. Huang, and J. C. Sheu, “Fusarium root rot of periwinkle in Taiwan,” Plant Protection Bulletin, vol. 40, pp. 177–183, 1998. View at Google Scholar
  87. R. J. McGovern, T. E. Seijo, and T. A. Davis, “Evaluation of fungicides and a fertilizer for control of Phytophthora blight in Madagascar periwinkle,” Fungic Nematicide Tests, vol. 58, p. OT048, 2003. View at Google Scholar
  88. R. T. McMillan Jr. and W. R. Graves, “Periwinkle twig blight caused by Colletotricum dematium on Catharanthus roseus L,” Proceedings of the Florida State Horticultural Society, vol. 9, no. 109, pp. 19–20, 1996. View at Google Scholar
  89. W. Hao, P. A. Richardson, and C. X. Hong, “Foliar blight of annual vinca (Catharanthus roseus) caused by Phytophthora tropicalis in Virginia,” Plant Disease, vol. 94, no. 2, article 274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. L. Daughtrey, R. L. Wick, and J. L. Peterson, Compendium of Flowering Potted Plant Diseases, APS Press, St Paul, Minn, USA, 1995.
  91. A. Garibaldi, D. Bertetti, and M. L. Gullino, “First report of botrytis blight caused by Botrytis cinerea on Periwinkle (Catharanthus roseus) in Italy,” Plant Disease, vol. 93, no. 5, p. 554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. W. Ou-Yang and W. S. Wu, “Survey of periwinkle diseases in Taiwan,” Plant Pathology Bulletin, vol. 7, pp. 147–149, 1998. View at Google Scholar
  93. M. Baligh, M. A. Delgado, and K. E. Conway, “Evaluation of Burkholderia cepacia strains: root colonization of Catharanthus roseus and in-vitro inhibition of selected soil-borne fungal pathogens,” Proceedings of the Oklahoma Academy of Science, vol. 79, pp. 19–27, 1999. View at Google Scholar
  94. D. M. Benson, “Aluminum amendment of potting mixes for control of phytophthora damping-off in bedding plants,” HortScience, vol. 30, no. 7, pp. 1413–1416, 1995. View at Google Scholar · View at Scopus
  95. J. R. Burns and D. M. Benson, “Biocontrol of damping-off of Catharanthus roseus caused by Pythium ultimum with Trichoderma virens and binucleate Rhizoctonia fungi,” Plant Disease, vol. 84, no. 6, pp. 644–648, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. C. B. Yandoc, E. N. Rosskopf, D. A. Shah, and J. P. Albano, “Effect of fertilization and biopesticides on the infection of Catharanthus roseus by Phytophthora nicotianae,” Plant Disease, vol. 91, no. 11, pp. 1477–1483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. N. R. Mustafa and R. Verpoorte, “Phenolic compounds in Catharanthus roseus,” Phytochemistry Reviews, vol. 6, no. 2-3, pp. 243–258, 2007. View at Publisher · View at Google Scholar
  98. F. Ferreres, D. M. Pereira, P. Valentão, P. B. Andrade, R. M. Seabra, and M. Sottomayor, “New phenolic compounds and antioxidant potential of Catharanthus roseus,” Journal of Agricultural and Food Chemistry, vol. 56, no. 21, pp. 9967–9974, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. R. Candido and D. M. Martinez, “The stability of an acid-base indicator paper from Catharanthus roseus (Periwinkle) flower extract,” WMSU Research Journal, vol. 28, no. 1, pp. 1–13, 2009. View at Google Scholar
  100. S. U. Kokil, D. G. Joshi, and R. L. Jadhav, “Catharanthus roseus flower extract as natural indicator in acid base titration,” Articlesbase, 2007, http://www.articlesbase.com/science-articles/catharanthus-roseus-flower-extract-as-natural-indicator-in-acid-base-titration-236311.html. View at Google Scholar
  101. M. Daniel, Medicinal Plants: Chemistry and Properties, Science Publishers, 2006.
  102. S. Hisiger and M. Jolicoeur, “Analysis of Catharanthus roseus alkaloids by HPLC,” Phytochemistry Reviews, vol. 6, no. 2-3, pp. 207–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. J.-H. Renault, J.-M. Nuzillard, G. Le Crouérour, P. Thépenier, M. Zèches-Hanrot, and L. Le Men-Olivier, “Isolation of indole alkaloids from Catharanthus roseus by centrifugal partition chromatography in the pH-zone refining mode,” Journal of Chromatography A, vol. 849, no. 2, pp. 421–431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  104. L. Wang, Y. Zhang, H. P. He, Q. Zhang, S. F. Li, and X. J. Hao, “Three new terpenoid indole alkaloids from Catharanthus roseus,” Planta Medica, vol. 77, no. 7, pp. 754–758, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. J. A. Duke, Handbook of Medicinal Herbs: Catharanthus roseus, CRC Press, Boca Raton, Fla, USA, 1985.
  106. O. P. Virmani, G. N. Srivastava, and P. Singh, “Catharanthus roseus the tropical periwinkle,” Indian Drugs, vol. 15, pp. 231–252, 1978. View at Google Scholar
  107. K. Sukumar and Z. Osmani, “Insect sterilants from Catharanthus roseus,” Current Science, vol. 50, no. 12, pp. 552–553, 1981. View at Google Scholar
  108. M. R. Narayana and B. P. Dimri, Periwinkle and its Cultivation in India, CIMAP, Lucknow, India, 1990.
  109. E. Vega-Ávila, J. L. Cano-Velasco, F. J. Alarcón-Aguilar, M. D. C. Fajardo Ortíz, J. C. Almanza-Pérez, and R. Román-Ramos, “Hypoglycemic activity of aqueous extracts from Catharanthus roseus,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 934258, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. H. D. Neuwinger, African Traditional Medicine: A Dictionary of Plant Use and Applications, Medpharm Scientific, Stuttgart, Germany, 2000.
  111. J. X. Guo, T. Kimura, P. P. H. But, C. K. Sung, and B. H. Han, International Collation of Traditional and Folk Medicine, vol. 4, World Scientific Publishers, 2001.
  112. D. Levêque and F. Jehl, “Molecular pharmacokinetics of Catharanthus (Vinca) alkaloids,” The Journal of Clinical Pharmacology, vol. 47, no. 5, pp. 579–588, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. S. Nobili, D. Lippi, E. Witort et al., “Natural compounds for cancer treatment and prevention,” Pharmacological Research, vol. 59, no. 6, pp. 365–378, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. M. A. Jordan and L. Wilson, “Microtubules as a target for anticancer drugs,” Nature Reviews Cancer, vol. 4, no. 4, pp. 253–265, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. R. J. Sherines and S. S. Howard, “Male infertility,” in Campbells Urology, J. H. Harrison, R. F. Gittes, A. D. Perlmutter, T. A. Stamey, and P. C. Walsh, Eds., vol. 1, p. 715, WB Saunders, Philadelphia, Pa, USA, 4th edition, 1978. View at Google Scholar
  116. S. A. James, L. Bilbiss, and B. Y. Muhammad, “The effects of Catharanthus roseus (L) G. Don 1838 aqueous leaf extract on some liver enzymes, serum proteins and vital organs,” Science World Journal, vol. 2, pp. 5–9, 2007. View at Google Scholar
  117. J. M. Pezzuto, “Plant-derived anticancer agents,” Biochemical Pharmacology, vol. 53, no. 2, pp. 121–133, 1997. View at Publisher · View at Google Scholar · View at Scopus
  118. V. E. Tyler, “Medicinal plant research: 1953–1987,” Planta Medica, vol. 54, no. 2, pp. 95–100, 1988. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. R. Verpoorte, R. van der Heijden, J. Schripsema, J. H. C. Hoge, and H. J. G. Ten Hoopen, “Plant cell biotechnology for the production of alkaloids: present status and prospects,” Journal of Natural Products, vol. 56, no. 2, pp. 186–207, 1993. View at Publisher · View at Google Scholar · View at Scopus
  120. G. H. Schmelzer, “Catharanthus roseus (L.),” in Medicinal plants/Plantes médicinales 1, G. H. Schmelzer and A. Gurib-Fakim, Eds., PROTA, Wageningen, The Netherlands, 2007. View at Google Scholar
  121. V. Salim, F. Yu, J. Altarejos, and V. de Luca, “Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis,” The Plant Journal, vol. 76, no. 5, pp. 754–765, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  122. M. Debnath, C. P. Malik, and P. S. Bisen, “Micropropagation: a tool for the production of high quality plant-based medicines,” Current Pharmaceutical Biotechnology, vol. 7, no. 1, pp. 33–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. S. Foster, “From herbs to medicines: the Madagascar periwinkle's impact on childhood leukemia: a serendipitous discovery for treatment,” in Alternative & Complementary Therapies: A New Bimonthly Publication for Health Care Practitioners, J. Simon, R. Cooper, and K. Hughes, Eds., pp. 347–350, 2010. View at Google Scholar
  124. M. Y. Khan, S. Aliabbas, V. Kumar, and S. Rajkumar, “Recent advances in medicinal plant biotechnology,” Indian Journal of Biotechnology, vol. 8, no. 1, pp. 9–22, 2009. View at Google Scholar · View at Scopus
  125. A. Mujib, A. Ilah, N. Gandotra, and M. Z. Abdin, “In vitro application to improve alkaloid yield in Catharanthus roseus,” in Recent Progress in Medicinal Plants, Volume 4: Biotechnology and Genetic Engineering, J. N. Govil, P. A. Kumar, and V. K. Singh, Eds., pp. 415–440, Sci Tech Publication, Houston, Tex, USA, 2002. View at Google Scholar
  126. M. Sottomayor and A. R. Barceló, “The Vinca alkaloids: from biosynthesis and accumulation in plant cells, to uptake, activity and metabolism in animal cells,” Studies in Natural Products Chemistry, vol. 33, pp. 813–857, 2005. View at Publisher · View at Google Scholar
  127. S. Binet, E. Chaineau, A. Fellous et al., “Immunofluorescence study of the action of navelbine, vincristine and vinblastine on mitotic and axonal microtubules,” International Journal of Cancer, vol. 46, no. 2, pp. 262–266, 1990. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Antonio, N. R. Mustafa, S. Osorio et al., “Analysis of the interface between primary and secondary metabolism in Catharanthus roseus cell cultures using 13C-stable isotope feeding and coupled mass spectrometry,” Molecular Plant, vol. 6, no. 2, pp. 581–584, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. H. Rischer, M. Orešič, T. Seppänen-Laakso et al., “Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 14, pp. 5614–5619, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  130. A. Dutta, J. Batra, S. Pandey-Rai, D. Singh, S. Kumar, and J. Sen, “Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don,” Planta, vol. 220, no. 3, pp. 376–383, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. P. Mishra, G. C. Uniyal, S. Sharma, and S. Kumar, “Pattern of diversity for morphological and alkaloid yield related traits among the periwinkle Catharanthus roseus accessions collected from in and around Indian subcontinent,” Genetic Resources and Crop Evolution, vol. 48, no. 3, pp. 273–286, 2001. View at Publisher · View at Google Scholar · View at Scopus
  132. S. P. Rai, R. Luthra, and S. Kumar, “Salt-tolerant mutants in glycophytic salinity response (GSR) genes in Catharanthus roseus,” Theoretical and Applied Genetics, vol. 106, no. 2, pp. 221–230, 2003. View at Google Scholar · View at Scopus
  133. K.-M. Oksman-Caldentey and D. Inzé, “Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites,” Trends in Plant Science, vol. 9, no. 9, pp. 433–440, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. M. El-Sayed and R. Verpoorte, “Catharanthus terpenoid indole alkaloids: biosynthesis and regulation,” Phytochemistry Reviews, vol. 6, no. 2-3, pp. 277–305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. P. Lackman, M. González-Guzmán, S. Tilleman et al., “Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 14, pp. 5891–5896, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. P. R. Moreno, R. Van Der Heijden, and R. Verpoorte, “Cell and tissue cultures of Catharanthus roseus: a literature survey,” Plant Cell, Tissue and Organ Culture, vol. 42, no. 1, pp. 1–25, 1995. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Datta and P. S. Srivastava, “Variation in vinblastine production by Catharanthus roseus, during in vivo and in vitro differentiation,” Phytochemistry, vol. 46, no. 1, pp. 135–137, 1997. View at Publisher · View at Google Scholar
  138. Y. Miura, K. Hirata, N. Kurano, K. Miyamoto, and K. Uchida, “Formation of vinblastine in multiple shoot culture of Catharanthus roseus,” Planta Medica, vol. 54, no. 1, pp. 18–20, 1988. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  139. A. Ataei-Azimi, H. B. Delnavaz, H. Ebrahimzadeh, and A. Majd, “High in vitro production of ant-canceric indole alkaloids from periwinkle (Catharanthus roseus) tissue culture,” African Journal of Biotechnology, vol. 7, no. 16, pp. 2834–2839, 2008. View at Google Scholar · View at Scopus
  140. S. Yokoshima, T. Ueda, S. Kobayashi et al., “Stereocontrolled total synthesis of (+)-vinblastine,” Journal of the American Chemical Society, vol. 124, no. 10, pp. 2137–2139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. J. Liu, J. Zhu, L. Tang, W. Wen, S. Lv, and R. Yu, “Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation,” World Journal of Microbiology and Biotechnology, vol. 30, no. 1, pp. 175–180, 2014. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. M. Koul, N. S. Lakra, R. Chandra, and S. Chandra, “Catharanthus roseus and prospects of its endophytes: a new avenue for production of bioactive metabolites,” International Journal of Pharmaceutical Sciences and Research, vol. 4, no. 7, pp. 2705–2716, 2013. View at Google Scholar
  143. R. N. Kharwar, V. C. Verma, G. Strobel, and D. Ezra, “The endophytic fungal complex of Catharanthus roseus (L.) G. Don,” Current Science, vol. 95, no. 2, pp. 228–233, 2008. View at Google Scholar · View at Scopus
  144. L. B. Zhang, L. H. Gou, and S. V. Zeng, “Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce product of therapeutic value,” Chinese Traditional and Herbal Drugs, vol. 11, pp. 805–807, 2000. View at Google Scholar
  145. C. Y. Tung, D. B. Yang, and M. Gou, “A preliminary study on the condition of the culture and isolate of endophytic fungus producing Vincristine,” Journal of Chuxiong Normal University, vol. 6, pp. 39–41, 2002. View at Google Scholar
  146. B. Guo and L. H. Kunming, “A middle vinblastine fungi isolated,” Journal of Yunnan University, vol. 20, pp. 214–215, 1998. View at Google Scholar
  147. A. Kumar, D. Patil, P. R. Rajamohanan, and A. Ahmad, “Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus,” PLoS ONE, vol. 8, no. 9, Article ID e71805, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  148. M. M. R. Costa, F. Hilliou, P. Duarte et al., “Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus,” Plant Physiology, vol. 146, no. 2, pp. 403–417, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. D. I. Jacobs, M. Gaspari, J. Van Der Greef, R. Van Der Heijden, and R. Verpoorte, “Proteome analysis of the medicinal plant Catharanthus roseus,” Planta, vol. 221, no. 5, pp. 690–704, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. A. Champagne, H. Rischer, K. M. Oksman-Caldentey, and M. Boutry, “In-depth proteome mining of cultured Catharanthus roseus cells identifies candidate proteins involved in the synthesis and transport of secondary metabolites,” Proteomics, vol. 12, no. 23-24, pp. 3536–3547, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. G. W. Sander, Quantitative analysis of metabolic pathways in Catharanthus roseus hairy roots metabolically engineered for terpenoid indole alkaloid overproduction [Ph.D. thesis], Iowa State University, Ames, Iowa, USA, 2009.
  152. C. Zhou, J. Zhang, S.-J. Zhao, and Z.-B. Hu, “An active Catharanthus roseus desacetoxyvindoline-4-hydroxylase-like gene and its transcriptional regulatory profile,” Botanical Studies, vol. 55, no. 1, article 29, 2014. View at Publisher · View at Google Scholar · View at Scopus
  153. Q. Pan, Q. Wang, F. Yuan et al., “Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics,” PLoS ONE, vol. 7, no. 8, Article ID e43038, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  154. S. E. O'Connor and J. J. Maresh, “Chemistry and biology of monoterpene indole alkaloid biosynthesis,” Natural Product Reports, vol. 23, no. 4, pp. 532–547, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. T. Hashimoto and Y. Yamada, “New genes in alkaloid metabolism and transport,” Current Opinion in Biotechnology, vol. 14, no. 2, pp. 163–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Wink and M. Roberts, “Compartmentation of alkaloid synthesis, transport, and storage,” in Alkaloids, M. Roberts and M. Wink, Eds., pp. 301–307, Plenum Press, New York, NY, USA, 1998. View at Google Scholar
  157. O. Ginis, V. Courdavault, C. Melin et al., “Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway,” Molecular Biology Reports, vol. 39, no. 5, pp. 5433–5447, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  158. Y.-C. Sung, C.-P. Lin, and J.-C. Chen, “Optimization of virus-induced gene silencing in Catharanthus roseus,” Plant Pathology, vol. 63, no. 5, pp. 1159–1167, 2014. View at Publisher · View at Google Scholar · View at Scopus
  159. S. W. Kim, S. H. Ban, S.-C. Jeong et al., “Genetic discrimination between Catharanthus roseus cultivars by metabolic fingerprinting using 1H NMR spectra of aromatic compounds,” Biotechnology and Bioprocess Engineering, vol. 12, no. 6, pp. 646–652, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. S. W. Kim, J. H. Kim, and J. R. Liu, “Genetic discrimination of Catharanthus roseus cultivars by pyrolysis mass spectrometry,” Journal of Plant Biology, vol. 52, no. 5, pp. 462–465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. R. K. Shaw, L. Acharya, and A. K. Mukherjee, “Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers,” Crop Breeding and Applied Biotechnology, vol. 9, no. 1, pp. 52–59, 2009. View at Google Scholar · View at Scopus
  162. M. Magnotta, J. Murata, J. Chen, and V. de Luca, “Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling,” Phytochemistry, vol. 67, no. 16, pp. 1758–1764, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  163. Y. D. Qing, P. BinYe, R. D. L. Kun et al., “ISSR analysis of genetic relationships between forty varieties of Catharanthus roseus,” Journal of Shanghai Jiaotong University—Agricultural Science, vol. 27, pp. 138–142, 2011. View at Google Scholar
  164. S. Lal, K. N. Mistry, S. D. Shah, R. Thaker, and P. B. Vaidya, “Genetic diversity assessment in nine cultivars of Catharanthus roseus from Central Gujarat (India) through RAPD, ISSR and SSR markers,” Journal of Biological Research, vol. 8, pp. 667–675, 2011. View at Google Scholar
  165. B. Shokeen, N. K. Sethy, S. Kumar, and S. Bhatia, “Isolation and characterization of microsatellite markers for analysis of molecular variation in the medicinal plant Madagascar periwinkle (Catharanthus roseus (L.) G. Don),” Plant Science, vol. 172, no. 3, pp. 441–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  166. D. M. Pereira, F. Ferreres, J. Oliveira, P. Valentão, P. B. Andrade, and M. Sottomayor, “Targeted metabolite analysis of Catharanthus roseus and its biological potential,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1349–1354, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. D. M. Pereira, F. Ferreres, J. M. A. Oliveira et al., “Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission,” Phytomedicine, vol. 17, no. 8-9, pp. 646–652, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. N. Singh, B. R. Pandey, and P. Verma, “An overview of phytotherapeutic approach in prevention and treatment of Alzheimer’s Syndrome & Dementia,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 3, no. 3, pp. 162–172, 2011. View at Google Scholar
  169. S. Agarwal, S. Jacob, N. Chettri et al., “Evaluation of in-vitro anthelminthic activity of Catharanthus roseus extract,” The International Journal of Pharmaceutical Sciences and Drug Research, vol. 3, no. 3, pp. 211–213, 2011. View at Google Scholar
  170. T. Murugavel and M. A. Akbarsha, “Anti-spermatogenic effect of Vinca rosea Linn,” Indian Journal of Experimental Biology, vol. 29, no. 9, pp. 810–812, 1991. View at Google Scholar · View at Scopus
  171. S. Wang, Z. Zheng, Y. Weng et al., “Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts,” Life Sciences, vol. 74, no. 20, pp. 2467–2478, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  172. P. Goyal, A. Khanna, A. Chauhan, G. Chauhan, and P. Kaushik, “In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity,” International Journal of Green Pharmacy, vol. 2, pp. 176–181, 2008. View at Google Scholar
  173. P. J. Patil and J. S. Ghosh, “Antimicrobial activity of Catharanthus roseus—a detailed study,” British Journal of Pharmacology and Toxicology, vol. 1, pp. 40–44, 2010. View at Google Scholar
  174. S. Ramya, V. Govindaraji, K. Navaneetha, and R. Jayakumararaj, “In vitro evaluation of antibacterial activity using crude extracts of Catharanthus roseus L. (G.) Don,” Ethnobotanical Leaflets, vol. 12, pp. 1067–1072, 2008. View at Google Scholar
  175. A. K. Verma and R. R. Singh, “Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity,” Indian Journal of Pharmaceutical Sciences, vol. 72, no. 5, pp. 655–657, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  176. K. A. Hassan, A. T. Brenda, V. Patrick, and O. E. Patrick, “In vivo antidiarrheal activity of the ethanolic leaf extract of Catharanthus roseus linn. (Apocyanaceae) in wistar rats,” African Journal of Pharmacy and Pharmacology, vol. 5, no. 15, pp. 1797–1800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  177. R. Mathur and S. Chaudan, “Antifertility efficacy of Catharanthus roseus Linn: a biochemical and histological study,” Acta Europaea Fertilitatis, vol. 16, no. 3, pp. 203–205, 1985. View at Google Scholar · View at Scopus
  178. V. Prajapati, A. K. Tripathi, D. C. Jain, S. Sharma, and S. P. S. Khanuja, “Sensitivity of Spilarctia obliqua to root extracts of Catharanthus roseus,” Phytotherapy Research, vol. 12, no. 4, pp. 270–274, 1998. View at Google Scholar
  179. S. K. Chile and K. M. Vyas, “Efficacy of Vinca rosea extracts against protease from human pathogenic strains of Trichophyton rubrum Sab,” Hindustan Antibiotics Bulletin, vol. 26, no. 3-4, pp. 114–116, 1984. View at Google Scholar · View at Scopus
  180. A. K. Barde and S. M. Singh, “Activity of plant extracts against Scytalidium anamorph of Hendersonula toruloidea causing skin and nail diseases in man,” Indian Drugs, vol. 20, pp. 362–364, 1983. View at Google Scholar
  181. B. D. Benjamin, S. M. Kelkar, M. S. Pote, G. S. Kaklij, A. T. Sipahimalani, and M. R. Heble, “Catharanthus roseus cell cultures: growth, alkaloid synthesis and antidiabetic activity,” Phytotherapy Research, vol. 8, no. 3, pp. 185–186, 1994. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Bnouham, A. Ziyyat, H. Mekhfi, A. Tahri, and A. Legssyer, “Medicinal plants with potential antidiabetic activity—a review of ten years of herbal medicine research (1990–2000),” International Journal of Diabetes and Metabolism, vol. 14, no. 1, pp. 1–25, 2006. View at Google Scholar · View at Scopus
  183. R. R. Chattopadhyay, “A comparative evaluation of some blood sugar lowering agents of plant origin,” Journal of Ethnopharmacology, vol. 67, no. 3, pp. 367–372, 1999. View at Publisher · View at Google Scholar · View at Scopus
  184. K. Chauhan, S. Sharma, K. Rohatgi, and B. Chauhan, “Antihyperlipidemic and antioxidative efficacy of Catharanthus roseus Linn [Sadabahar] in streptozotocin induced diabetic rats,” Asian Journal of Pharmaceutical and Health Sciences, vol. 2, no. 1, pp. 235–243, 2011. View at Google Scholar
  185. E. E. J. Iweala and C. U. Okeke, “Comparative study of the hypoglycemic and biochemical effects of Catharanthus roseus (Linn) G. Apocynaceae (Madagascar periwinkle) and chlorpropamide (diabenese) on alloxan-induced diabetic rats,” Biokemistri, vol. 17, no. 2, pp. 149–156, 2005. View at Google Scholar
  186. E. Jarald, S. B. Joshi, and D. C. Jain, “Diabetes and herbal medicines,” Iranian Journal of Pharmacology and Therapeutics, vol. 7, no. 1, pp. 97–106, 2008. View at Google Scholar · View at Scopus
  187. S. Nammi, M. K. Boini, S. D. Lodagala, and R. B. S. Behara, “The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits,” BMC Complementary and Alternative Medicine, vol. 3, no. 1, article 4, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  188. S. N. Singh, P. Vats, S. Suri et al., “Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats,” Journal of Ethnopharmacology, vol. 76, no. 3, pp. 269–277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  189. R. R. Chattopadhyay, R. N. Banerjee, S. K. Sarkar, S. Ganguly, and T. K. Basu, “Antiinflammatory and acute toxicity studies with the leaves of Vinca rosea linn. in experimental animals,” Indian Journal of Physiology and Pharmacology, vol. 36, no. 4, pp. 291–292, 1992. View at Google Scholar · View at Scopus
  190. C. Y. Lim-Sylianco and F. Blanco, “Antimutagenic effects of some anti-cancer agents,” Bulletin of the Philippine Society for Biochemistry and Molecular Biology, vol. 4, pp. 1–7, 1981. View at Google Scholar
  191. G. M. Cragg and D. J. Newman, “Plants as a source of anti-cancer agents,” Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 72–79, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  192. J.-G. Dong, W. Bornmann, K. Nakanishi, and N. Berova, “Structural studies of vinblastine alkaloids by exciton coupled circular dichroism,” Phytochemistry, vol. 40, no. 6, pp. 1821–1824, 1995. View at Publisher · View at Google Scholar · View at Scopus
  193. M. M. El-Merzabani, A. A. El-Aaser, M. A. Attia, A. K. El-Duweini, and A. M. Ghazal, “Screening system for Egyptian plants with potential anti-tumour activity,” Planta Medica, vol. 36, no. 2, pp. 150–155, 1979. View at Publisher · View at Google Scholar · View at Scopus
  194. A. El-Sayed and G. A. Cordell, “Catharanthus alkaloids. XXXIV. Catharanthamine, a new antitumor bisindole alkaloid from Catharanthus roseus,” Journal of Natural Products, vol. 44, no. 3, pp. 289–293, 1981. View at Publisher · View at Google Scholar · View at Scopus
  195. A. El-Sayed, G. A. Handy, and G. A. Cordell, “Catharanthus alkaloids, XXXVIII. Confirming structural evidence and antineoplastic activity of the bisindole alkaloids Leurosine-N′b-oxide (pleurosine), roseadine and vindolicine from Catharanthus roseus,” Journal of Natural Products, vol. 46, no. 4, pp. 517–527, 1983. View at Publisher · View at Google Scholar · View at Scopus
  196. I. S. Johnson, H. F. Wright, G. H. Svoboda, and J. Vlantis, “Antitumor principles derived from Vinca rosea Linn. I. Vincaleukoblastine and leurosine,” Cancer Research, vol. 20, pp. 1016–1022, 1960. View at Google Scholar · View at Scopus
  197. A. K. Mukherjee, S. Basu, N. Sarkar, and A. C. Ghosh, “Advances in cancer therapy with plant based natural products,” Current Medicinal Chemistry, vol. 8, no. 12, pp. 1467–1486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  198. R. L. Noble, “The discovery of the vinca alkaloids-chemotherapeutic agents against cancer,” Biochemistry and Cell Biology, vol. 68, no. 12, pp. 1344–1351, 1990. View at Publisher · View at Google Scholar · View at Scopus
  199. W. Zheng and S. Y. Wang, “Antioxidant activity and phenolic compounds in selected herbs,” Journal of Agricultural and Food Chemistry, vol. 49, no. 11, pp. 5165–5170, 2001. View at Publisher · View at Google Scholar · View at Scopus
  200. J. W. Gathirwa, G. M. Rukunga, E. N. M. Njagi et al., “In vitro anti-plasmodial and in vivo anti-malarial activity of some plants traditionally used for the treatment of malaria by the Meru community in Kenya,” Journal of Natural Medicines, vol. 61, no. 3, pp. 261–268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  201. S. Ponarulselvam, C. Panneerselvam, K. Murugan, N. Aarthi, K. Kalimuthu, and S. Thangamani, “Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, no. 7, pp. 574–580, 2012. View at Publisher · View at Google Scholar · View at Scopus
  202. D. R. A. Mans, A. B. da Rocha, and G. Schwartsmann, “Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds,” Oncologist, vol. 5, no. 3, pp. 185–198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  203. J. Y. Ueda, Y. Tezuka, A. H. Banskota et al., “Antiproliferative activity of Vietnamese medicinal plants,” Biological and Pharmaceutical Bulletin, vol. 25, no. 6, pp. 753–760, 2002. View at Publisher · View at Google Scholar · View at Scopus
  204. R. S. Gupta and R. Sharma, “A review on medicinal plants exhibiting antifertility activity in males,” Natural Product Radiance, vol. 5, pp. 389–410, 2006. View at Google Scholar
  205. M. S. Joshi and R. Y. Ambaye, “Effect of alkaloids from Vinca rosea L. on spermatogenesis in male rats,” Indian Journal of Experimental Biology, vol. 6, no. 4, pp. 256–257, 1968. View at Google Scholar · View at Scopus
  206. D. E. Moerman, Native American Medicinal Plants: An Ethnobotanical Dictionary, Timber Press, Portland, Ore, USA, 2009.
  207. T. Usia, T. Watabe, S. Kadota, and Y. Tezuka, “Cytochrome P450 2D6 (CYP2D6) inhibitory constituents of Catharanthus roseus,” Biological and Pharmaceutical Bulletin, vol. 28, no. 6, pp. 1021–1024, 2005. View at Publisher · View at Google Scholar · View at Scopus
  208. K. Hostettmann, A. Marston, K. Ndjoko, and J.-L. Wolfender, “The potential of African plants as a source of drugs,” Current Organic Chemistry, vol. 4, no. 10, pp. 973–1010, 2000. View at Publisher · View at Google Scholar · View at Scopus
  209. M. J. Siddiqui, Z. Ismail, A. F. A. Aisha, and A. M. S. Abdul Majid, “Cytotoxic activity of Catharanthus roseus (Apocynaceae) crude extracts and pure compounds against human colorectal carcinoma cell line,” International Journal of Pharmacology, vol. 6, no. 1, pp. 43–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  210. D. A. Adekomi, “Madagascar periwinkle (Catharanthus roseus) enhances kidney and liver functions in Wistar rats,” European Journal of Anatomy, vol. 14, no. 3, pp. 111–119, 2010. View at Google Scholar · View at Scopus
  211. H. I. Averal, A. Stanley, P. Murugaian, M. Palanisamy, and M. A. Akbarsha, “Specific effect of vincristine on epididymis,” Indian Journal of Experimental Biology, vol. 34, no. 1, pp. 53–56, 1996. View at Google Scholar · View at Scopus
  212. A. Stanley and M. A. Akbarsha, “Giant spermatogonial cells generated by vincristine and their uses,” Current Science, vol. 63, no. 3, pp. 144–147, 1992. View at Google Scholar
  213. C. Kuppusamy, K. Murugan, N. Arul, and P. Yasodha, “Larvicidal and insect growth regulator effect of α-amyrin acetate from Catharanthus roseus Linn against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae),” Entomological Research, vol. 39, no. 1, pp. 78–83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  214. K. M. Remia and S. Logaswamy, “Larvicidal efficacy of leaf extract of two botanicals against the mosquito vector Aedes aegypti (Diptera: Culicidae),” Indian Journal of Natural Products and Resources, vol. 1, no. 2, pp. 208–212, 2010. View at Google Scholar · View at Scopus
  215. M. A. Akbarsha, A. Stanley, and H. I. Averal, “Effect of vincristine on Leydig cell and accessory reproductive organs,” Current Science, vol. 68, no. 10, pp. 1053–1057, 1995. View at Google Scholar
  216. A. Stanley, H. A. Averal, and M. A. Akbarsha, “Reproductive toxicity of vincristine in male rats,” Indian Journal of Experimental Biology, vol. 31, no. 4, pp. 380–382, 1993. View at Google Scholar · View at Scopus
  217. A. Kurian and A. Sankar, Medicinal Plants: Horticulture Science Series—2, New India Publishing Agency, 2007.
  218. B. S. Nayak and L. M. Pinto Pereira, “Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats,” BMC Complementary and Alternative Medicine, vol. 6, article 41, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus