VLSI Design

VLSI Design / 1998 / Article
Special Issue

High Performance Design Automation of VLSI Interconnects

View this Special Issue

Open Access

Volume 7 |Article ID 34910 | 12 pages | https://doi.org/10.1155/1998/34910

Minimum Crosstalk Vertical Layer Assignment for Three-Layer VHV Channel Routing

Abstract

With the increasing density of VLSI circuits, the interconnection wires are getting packed even closer. This has increased the effect of interaction between these wires on circuit performance and hence, the importance of controlling crosstalk. We consider the gridded channel routing problem where, specifically, the channel has 3 routing layers in the VHV configuration. Given a horizontal track assignment for the nets, we present an optimal algorithm for minimizing the crosstalk between vertical wiring segments in the channel by finding an optimal vertical layer assignment for them. We give an algorithm that minimizes total crosstalk between vertical wires on the same V layer on adjacent columns of the grid in O(ν logν) time using O(ν) memory, where the channel has ν columns. We then extend this algorithm to consider crosstalk between wires in nonadjacent columns and between wires on different layers. Finally, we show how our algorithms can be extended to take crosstalk tolerance specifications for nets into account.

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.