VLSI Design

VLSI Design / 1998 / Article
Special Issue

Computational Electronics

View this Special Issue

Open Access

Volume 8 |Article ID 39231 | 5 pages | https://doi.org/10.1155/1998/39231

SPIN – A Schrödinger-Poisson Solver Including Nonparabolic Bands


Nonparabolicity effects in two-dimensional electron systems are quantitatively analyzed. A formalism has been developed which allows to incorporate a nonparabolic bulk dispersion relation into the Schrödinger equation. As a consequence of nonparabolicity the wave functions depend on the in-plane momentum. Each subband is parametrized by its energy, effective mass and a subband nonparabolicity coefficient. The formalism is implemented in a one-dimensional Schrödinger-Poisson solver which is applicable both to silicon inversion layers and heterostructures.

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

0 Views | 0 Downloads | 0 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.