High field transport in phosphor materials is an essential element of thin film electroluminescent device performance. Due to the high accelerating fields in these structures (1–3 MV/cm), a complete description of transport under high field conditions utilizing information on the full band structure of the material is critical to understand the light emission process due to impact excitation of luminescent impurities. Here we investigate the role of band structure for ZnS, GaN, and SrS based on empirical pseudopotential calculations to study its effect on the high field energy distribution of conduction band electrons.