VLSI Design

VLSI Design / 1998 / Article
Special Issue

Computational Electronics

View this Special Issue

Open Access

Volume 8 |Article ID 097242 | https://doi.org/10.1155/1998/97242

Ik-Sung Lim, Robert O. Grondin, Samir El-Ghazaly, "Ensemble Monte Carlo and Full-Wave Electrodynamic Models Implemented Self-Consistently on a Parallel Processor Using Perfectly Matched Layer Boundary Conditions", VLSI Design, vol. 8, Article ID 097242, 5 pages, 1998. https://doi.org/10.1155/1998/97242

Ensemble Monte Carlo and Full-Wave Electrodynamic Models Implemented Self-Consistently on a Parallel Processor Using Perfectly Matched Layer Boundary Conditions

Abstract

We have been using a self-consistent formulation of full-wave electromagnetic solvers and ensemble Monte Carlo techniques to model ultrafast photoconductivity. Our simulations are running on a MasPar machine. This paper will address aspects ofthis simulation which may interest workers who are simulating not only photoconductive systems but other systems as well which involve electrodynamics, waves and wave phenomena and ensemble Monte Carlo transport models. In particular, we will report on the inclusion of perfectly matched layer approaches to absorbing boundary conditions for electromagnetic waves. These have in the past several years become widely used in computational electromagnetics codes because they reduce error due to spurious numerical wave reflection off of an absorbing boundary by several orders of magnitude. We will also address the issue of computational cost and show that a full-wave electromagnetic approach is more competitive with a Poisson's equation approach than one might believe. Lastly, our system has the feature that the active portion where the electrons and holes lie is in fact a small fraction of the total experimental system's volume. Unless care is exerted one either has a very significant load imbalance problem or high communications overhead. We compare two different tradeoffs between load imbalance and communications overhead.

Copyright © 1998 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views78
Downloads426
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.