Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2012, Article ID 580584, 16 pages
http://dx.doi.org/10.1155/2012/580584
Research Article

Enabling Fast ASIP Design Space Exploration: An FPGA-Based Runtime Reconfigurable Prototyper

1Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy
2Silicon Hive B.V., High Tech Campus, 5656AE Eindhoven, The Netherlands

Received 15 September 2011; Revised 22 December 2011; Accepted 22 December 2011

Academic Editor: Lech Jozwiak

Copyright © 2012 Paolo Meloni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. SiliconHive, Hivelogic Configurable Parallel Processing Platform, SiliconHive, 2010.
  2. T. Austin, E. Larson, and D. Ernest, “SimpleScalar: an infrastructure for computer system modeling,” Computer, vol. 35, no. 2, pp. 12–67, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. Magnusson, M. Christensson, J. Eskilson et al., “Simics: a full system simulation platform,” Computer, vol. 35, no. 2, pp. 12–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Binkert, B. Beckmann, G. Black et al., “The gem5 simulator,” Computer Architecture News—SIGARCH, vol. 39, pp. 1–7, 2011. View at Google Scholar
  5. L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri, “MPARM: exploring the multi-processor SoC design space with systemC,” Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, vol. 41, no. 2, pp. 169–182, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. E. Miller, H. Kasture, G. Kurian et al., “Graphite: a distributed parallel simulator for multicores,” in Proceedings of the 16th International Symposium on High-Performance Computer Architecture (HPCA '10), pp. 1–12, January 2010. View at Scopus
  7. E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega, “COTSon: infrastructure for full system simulation,” ACM SIGOPS Operating Systems Review, vol. 43, no. 1, pp. 52–61. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Falcon, P. Faraboschi, and D. Ortega, “Combining simulation and virtualizationthrough dynamic sampling,” in Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS '07), pp. 72–83, April 2007.
  9. G. Ascia, V. Catania, M. Palesi, and D. Patti, “A system-level framework for evaluating area/performance/power trade-offs of VLIW-based embedded systems,” in Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC '05), vol. 2, pp. 940–943, January 2005.
  10. A. G. Di Nuovo, M. Palesi, D. Patti, G. Ascia, and V. Catania, “Fuzzy decision making in embedded system design,” in Proceedings of the 4th International Conference on Hardware Software Codesign and System Synthesis (CODES+ISSS '06), pp. 223–228, ACM, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. D. Underwood and K. S. Hemmert, “Closing the gap: CPU and FPGA trends in sustainable floating-point BLAS performance,” in Proceedings of the 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM '04), pp. 219–228, April 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Wawrzynek, D. Patterson, M. Oskin et al., “RAMP: research accelerator for multiple processors,” IEEE Micro, vol. 27, no. 2, pp. 46–57, 2007. View at Publisher · View at Google Scholar
  13. S. Wee, J. Casper, N. Njoroge et al., “A practical FPGA-based framework for novel CMP research,” in Proceedings of the 15th ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA '07), pp. 116–125, ACM, February 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Krasnov, A. Schultz, J. Wawrzynek, G. Gibeling, and P. Y. Droz, “RAMP Blue: a message-passing manycore system in FPGAs,” in Proceedings of the International Conference on Field Programmable Logic and Applications (FPL '07), pp. 27–29, August 2007.
  15. Z. Tan, A. Waterman, R. Avizienis et al., “RAMP Gold: an FPGA-based architecture simulator for multiprocessors,” in Proceedings of the 47th Design Automation Conference (DAC '10), pp. 463–468, usa, June 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Del Valle, D. Atienza, I. Magan et al., “Architectural exploration of MPSoC designs based on an FPGA emulation framework,” in Proceedings of the Design of Circuits and Integrated Systems Conference (DCIS '06), pp. 12–18, Barcelona, Spain, November 2006.
  17. N. Genko, D. Atienza, G. De Micheli et al., “A novel approach for network on chip emulation,” in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '05), vol. 2, pp. 2365–2368, May 2005. View at Publisher · View at Google Scholar
  18. D. Chiou, D. Sunwoo, J. Kim et al., “FPGA-accelerated simulation technologies (FAST): fast, full-system, cycle-accurate simulators,” in Proceedings of the 40th IEEE/ACM International Symposium on Microarchitecture (MICRO '07), pp. 249–261, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Lukovic and L. Fiorin, “An automated design flow for NoC-based MPSoCs on FPGA,” in Proceedings of the 19th IEEE/IFIP International Symposium on Rapid System Prototyping—Shortening the Path from Specification to Prototype (RSP '08), pp. 58–64, IEEE Computer Society, Washington, DC, USA, 2008. View at Publisher · View at Google Scholar
  20. P. Meloni, S. Secchi, and L. Raffo, “An FPGA-based framework for technology-aware prototyping of multicore embedded architectures,” IEEE Embedded Systems Letters, vol. 2, no. 1, pp. 5–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A fast emulation-based NoC prototyping framework,” in Proceedings of the International Conference on Reconfigurable Computing and FPGAs (RECONFIG '08), pp. 211–216, IEEE Computer Society, Washington, DC, USA, 2008.
  22. S. Wong, F. Anjam, and F. Nadeem, “Dynamically reconfigurable register file for a softcore vliw processor,” in Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE '10), pp. 969–972, March 2010.
  23. G. Palermo, C. Silvano, and V. Zaccaria, “Multi-objective design spaceexploration of embedded systems,” Journal of Embedded Computing, vol. 1, pp. 305–316, 2005. View at Google Scholar
  24. T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for paretooptimalconfigurations in parameterized systems-on-a-chip,” in Proceedingsof the IEEE/ACM international conference on Computer-aided design (ICCAD '01), pp. 25–30, IEEE Press, Piscataway, NJ, USA, 2001.
  25. J. E. Coffland and A. D. Pimentel, “A software framework for efficient system-level performance evaluation of embedded systems,” in Proceedings of the ACM Symposium on Applied Computing (SAC ’03), pp. 666–671, ACM, New York, NY, USA, March 2003. View at Scopus
  26. Xilinx, “System Generator for DSP,” http://www.xilinx.com/support/sw manuals/sysgen gs.pdf.
  27. E. Cannella, O. Derin, and T. Stefanov, “Middleware approaches for adaptivityof kahn process networks on networks-on-chip,” in Proceedings of the Conference on Design and Architectures for Signal and Image Processing (DASIP '11), pp. 1–8, Tampere, Finland, November 2011.