Table of Contents Author Guidelines Submit a Manuscript
VLSI Design
Volume 2012, Article ID 784945, 15 pages
Research Article

A Systematic Methodology for Reliability Improvements on SoC-Based Software Defined Radio Systems

Department of Computer Science, School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece

Received 15 November 2011; Revised 29 February 2012; Accepted 3 April 2012

Academic Editor: Dionysios Reisis

Copyright © 2012 Dionysios Diamantopoulos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Shrinking silicon technologies, increasing logic densities and clock frequencies, lead to a rapid elevation in power density. Increased power density results in higher onchip temperature, which creates numerous problems tightly firmed to reliability degradation. Since typical low-power design has been proved inefficient to tackle the temperature increment by itself, device architects are facing the challenge of developing new methodologies to guarantee timing, power, and thermal integrity of the chip. In this paper, we propose a thermal-aware exploration framework targeting temperature hotspots elimination through the efficient exploration of multiple microarchitecture selections over the temperature-area trade-off curve. By carefully planning at design time the resources of the initial microarchitecture that should be replicated, the proposed methodology optimizes the system’s thermal profile and attens on-chip temperature under various design constraints. The introduced framework does not impose any architectural or compiler modification, whereas it is orthogonal to any other thermal-aware methodology. For evaluation purposes, we employ the software-defined radio executed onto a thermal-aware instance of LEON3 processor. Based on experimental results, we found that our methodology leads to an architecture that exhibits temperature reduction of 17 Kelvin degrees, which leads to improvement against aging phenomena about 14%, with a controllable overhead in silicon area about 15%, compared to the initial LEON3 instance.