Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2010, Article ID 385640, 8 pages
http://dx.doi.org/10.4061/2010/385640
Review Article

Antibiotic Treatment of Dogs and Cats during Pregnancy

1Farmacología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín 280, 1427 Buenos Aires, Argentina
2Teriogenología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Chorroarín 280, 1427 Buenos Aires, Argentina

Received 30 April 2010; Revised 24 August 2010; Accepted 2 November 2010

Academic Editor: William S. Dernell

Copyright © 2010 Marcela Rebuelto and María Elena Loza. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Weiner, C. Buhimschi, and P. Swaan, “Drug-prescribing challenges during pregnancy,” Current Obstetrics and Gynaecology, vol. 15, no. 3, pp. 157–165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Gedeon and G. Koren, “Designing pregnancy centered medications: drugs which do not cross the human placenta,” Placenta, vol. 27, no. 8, pp. 861–868, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. Mattison and A. Zajicek, “Gaps in knowledge in treating pregnant women,” Gender Medicine, vol. 3, no. 3, pp. 169–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Sachdeva, B. G. Patel, and B. K. Patel, “Drug use in pregnancy; a point to ponder!,” Indian Journal of Pharmaceutical Sciences, vol. 71, no. 1, pp. 1–7, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. Serreau, “Médicaments utilisés dans la prise en charge de la prééclampsie. Pharmacologie et risques foetaux,” Annales Francaises d'Anesthesie et de Reanimation, vol. 29, no. 4, pp. e37–e46, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. W. S. Webster and J. A. D. Freeman, “Is this drug safe in pregnancy?” Reproductive Toxicology, vol. 15, no. 6, pp. 619–629, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. Schröder, “Comparative aspects of placental exchange functions,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 63, no. 1, pp. 81–90, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Enders and T. N. Blankenship, “Comparative placental structure,” Advanced Drug Delivery Reviews, vol. 38, no. 1, pp. 3–15, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Nau, “Teratogenicity of isotretinoin revisited: species variation and the role of all-trans-retinoic acid,” Journal of the American Academy of Dermatology, vol. 45, no. 5, pp. S183–S187, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. Myren, T. Mose, L. Mathiesen, and L. E. Knudsen, “The human placenta—an alternative for studying foetal exposure,” Toxicology in Vitro, vol. 21, no. 7, pp. 1332–1340, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. S. Barry and R. V. Anthony, “The pregnant sheep as a model for human pregnancy,” Theriogenology, vol. 69, no. 1, pp. 55–67, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Y. Xu, G. T. Knipp, and T. J. Cook, “Expression of CYP4A isoforms in developing rat placental tissue and rat trophoblastic cell models,” Placenta, vol. 26, no. 2-3, pp. 218–225, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Sun, J. Kingdom, D. Baczyk, S. J. Lye, S. G. Matthews, and W. Gibb, “Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation,” Placenta, vol. 27, no. 6-7, pp. 602–609, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. X. J. He, H. Yamauchi, K. Suzuki, M. Ueno, H. Nakayama, and K. Doi, “Gene expression profiles of drug-metabolizing enzymes (DMEs) in rat liver during pregnancy and lactation,” Experimental and Molecular Pathology, vol. 83, no. 3, pp. 428–434, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. G. M. Kalabis, S. Petropoulos, W. Gibb, and S. G. Matthews, “Breast cancer resistance protein (Bcrp1/Abcg2) in mouse placenta and yolk sac: ontogeny and its regulation by progesterone,” Placenta, vol. 28, no. 10, pp. 1073–1081, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. A. Mondragon, R. Ocadiz-Delgado, C. Miranda et al., “Expression of P450-aromatase in the goat placenta throughout pregnancy,” Theriogenology, vol. 68, no. 4, pp. 646–653, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. L. J. Dickmann, S. Tay, T. D. Senn et al., “Changes in maternal liver Cyp2c and Cyp2d expression and activity during rat pregnancy,” Biochemical Pharmacology, vol. 75, no. 8, pp. 1677–1687, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. C. Ellenberger, S. Wilsher, W. R. Allen et al., “Immunolocalisation of the uterine secretory proteins uterocalin, uteroferrin and uteroglobin in the mare's uterus and placenta throughout pregnancy,” Theriogenology, vol. 70, no. 5, pp. 746–757, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. T. N. Nanovskaya, I. A. Nekhayeva, G. D. V. Hankins, and M. S. Ahmed, “Transfer of methadone across the dually perfused preterm human placental lobule,” American Journal of Obstetrics and Gynecology, vol. 198, no. 1, pp. 126.e1–126.e4, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. B. V. R. Sastry, “Techniques to study human placental transport,” Advanced Drug Delivery Reviews, vol. 38, no. 1, pp. 17–39, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Myllynen and K. Vähäkangas, “An examination of whether human placental perfusion allows accurate prediction of placental drug transport: studies with diazepam,” Journal of Pharmacological and Toxicological Methods, vol. 48, no. 3, pp. 131–138, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. P. Myllynen, P. Pienimäki, and K. Vähäkangas, “Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs,” Toxicology and Applied Pharmacology, vol. 207, no. 2, pp. S489–S494, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. M. Dawes and P. J. Chowienczyk, “Pharmacokinetics in pregnancy,” Best Practice and Research: Clinical Obstetrics and Gynaecology, vol. 15, no. 6, pp. 819–826, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. A. Qasqas, C. McPherson, W. H. Frishman, and U. Elkayam, “Cardiovascular pharmacotherapeutic considerations during pregnancy and lactation,” Cardiology in Review, vol. 12, no. 4, pp. 201–221, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. A. Carlin and Z. Alfirevic, “Physiological changes of pregnancy and monitoring,” Best Practice and Research: Clinical Obstetrics and Gynaecology, vol. 22, no. 5, pp. 801–823, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. P. Conrad, “Mechanisms of renal vasodilation and hyperfiltration during pregnancy,” Journal of the Society for Gynecologic Investigation, vol. 11, no. 7, pp. 438–448, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. P. Di Salvo, F. Bocci, R. Zelli, and A. Polisca, “Doppler evaluation of maternal and fetal vessels during normal gestation in the bitch,” Research in Veterinary Science, vol. 81, no. 3, pp. 382–388, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. Scotti, P. Di Salvo, F. Bocci, C. Pieramati, and A. Polisca, “Doppler evaluation of maternal and foetal vessels during normal gestation in queen,” Theriogenology, vol. 69, no. 9, pp. 1111–1119, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. C. I. Vannucchi, R. M. Mirandola, and C. M. Oliveira, “Acute-phase protein profile during gestation and diestrous: proposal for an early pregnancy test in bitches,” Animal Reproduction Science, vol. 74, no. 1-2, pp. 87–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. P. A. Ulutas, B. Musal, F. Kiral, and A. Bildik, “Acute phase protein levels in pregnancy and oestrus cycle in bitches,” Research in Veterinary Science, vol. 86, no. 3, pp. 373–376, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. T. N. Nanovskaya, I. Nekhayeva, G. D. V. Hankins, and M. S. Ahmed, “Effect of human serum albumin on transplacental transfer of glyburide,” Biochemical Pharmacology, vol. 72, no. 5, pp. 632–639, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. E. Jauniaux and B. Gulbis, “In vivo study of placental drug transfer during the first trimester of human pregnancy,” Trophoblast Research, vol. 12, pp. 257–264, 1998. View at Google Scholar
  33. P. Bourget, A. Sertin, A. Lesne-Hulin, H. Fernandez, Y. Ville, and P. van Peborgh, “Influence of pregnancy on the pharmacokinetic behaviour and the transplacental transfer of the piperacillin-tazobactam combination,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 76, no. 1, pp. 21–27, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Heikkila, O. V. Renkonen, and R. Erkkola, “Pharmacokinetics and transplacental passage of imipenem during pregnancy,” Antimicrobial Agents and Chemotherapy, vol. 36, no. 12, pp. 2652–2655, 1992. View at Google Scholar · View at Scopus
  35. M. Oukessou, S. Benlamlih, and P. L. Toutain, “Benzylpenicillin kinetics in the ewe: influence of pregnancy and lactation,” Research in Veterinary Science, vol. 49, no. 2, pp. 190–193, 1990. View at Google Scholar · View at Scopus
  36. N. Papantoniou, G. Ismailos, G. Daskalakis et al., “Pharmacokinetics of oral cefatrizine in pregnant and non-pregnant women with reference to fetal distribution,” Fetal Diagnosis and Therapy, vol. 22, no. 2, pp. 100–106, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. A. E. Muller, P. J. Dörr, J. W. Mouton et al., “The influence of labour on the pharmacokinetics of intravenously administered amoxicillin in pregnant women,” British Journal of Clinical Pharmacology, vol. 66, no. 6, pp. 866–874, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. P. Bourget, H. Fernandez, V. Quinquis, and C. Delouis, “Pharmacokinetics and protein binding of ceftriaxone during pregnancy,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 1, pp. 54–59, 1993. View at Google Scholar · View at Scopus
  39. B. Bernard, S. J. Garcia Cazares, C. A. Ballard, L. D. Thrupp, A. W. Mathies, and P. F. Wehrle, “Tobramycin: maternal fetal pharmacology,” Antimicrobial Agents and Chemotherapy, vol. 11, no. 4, pp. 688–694, 1977. View at Google Scholar
  40. E. M. Santschi and M. G. Papich, “Pharmacokinetics of gentamicin in mares in late pregnancy and early lactation,” Journal of Veterinary Pharmacology and Therapeutics, vol. 23, no. 6, pp. 359–363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. G. J. Locksmith, A. Chin, T. Vu, K. E. Shattuck, and G. D. V. Hankins, “High compared with standard gentamicin dosing for chorioamnionitis: a comparison of maternal and fetal serum drug levels,” Obstetrics and Gynecology, vol. 105, no. 3, pp. 473–479, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. N. Lazebnik, S. Noy, R. Lazebnik, Y. Hezroni, I. Amoday, and A. Aviram, “Gentamicin serum half-life: a comparison between pregnant and non-pregnant women,” Postgraduate Medical Journal, vol. 61, no. 721, pp. 979–981, 1985. View at Google Scholar
  43. M. Oukessou and P. L. Toutain, “Influence of the stage of pregnancy on gentamicin disposition in the ewe,” Annales de Recherches Veterinaires, vol. 23, no. 2, pp. 145–150, 1992. View at Google Scholar · View at Scopus
  44. F. Reynolds, “Drug transfer across the term placenta,” Trophoblast Research, vol. 12, pp. 239–255, 1998. View at Google Scholar
  45. V. Ganapathy and P. D. Prasad, “Role of transporters in placental transfer of drugs,” Toxicology and Applied Pharmacology, vol. 207, no. 2, pp. S381–S387, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. Ceckova-Novotna, P. Pavek, and F. Staud, “P-glycoprotein in the placenta: expression, localization, regulation and function,” Reproductive Toxicology, vol. 22, no. 3, pp. 400–410, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. I. L. M. H. Aye, J. W. Paxton, D. A. Evseenko, and J. A. Keelan, “Expression, localisation and activity of ATP binding cassette (ABC) family of drug transporters in human amnion membranes,” Placenta, vol. 28, no. 8-9, pp. 868–877, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. E. Sölder, I. Rohr, C. Kremser, P. Hutzler, and P. L. Debbage, “Imaging of placental transport mechanisms: a review,” European Journal of Obstetrics, Gynecology, and Reproductive Biology, vol. 144, pp. S114–S120, 2009. View at Google Scholar · View at Scopus
  49. K. Vähäkangas and P. Myllynen, “Drug transporters in the human blood-placental barrier,” British Journal of Pharmacology, vol. 158, no. 3, pp. 665–678, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. L. J. A. Hardwick, S. Velamakanni, and H. W. van Veen, “The emerging pharmacotherapeutic significance of the breast cancer resistance protein (ABCG2),” British Journal of Pharmacology, vol. 151, no. 2, pp. 163–174, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Gedeon, J. Behravan, G. Koren, and M. Piquette-Miller, “Transport of glyburide by placental ABC transporters: implications in fetal drug exposure,” Placenta, vol. 27, no. 11-12, pp. 1096–1102, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. E. Pollex, A. Lubetsky, and G. Koren, “The role of placental breast cancer resistance protein in the efflux of glyburide across the human placenta,” Placenta, vol. 29, no. 8, pp. 743–747, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. J. Hemauer, S. L. Patrikeeva, T. N. Nanovskaya, G. D. V. Hankins, and M. S. Ahmed, “Role of human placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and metformin,” American Journal of Obstetrics and Gynecology, vol. 202, no. 4, pp. 383.e1–383.e7, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. Kovo, S. Haroutiunian, N. Feldman, A. Hoffman, and M. Glezerman, “Determination of metformin transfer across the human placenta using a dually perfused ex vivo placental cotyledon model,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 136, no. 1, pp. 29–33, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. K. Tertti, U. Ekblad, T. Heikkinen, M. Rahi, T. Rönnemaa, and K. Laine, “The role of organic cation transporters (OCTs) in the transfer of metformin in the dually perfused human placenta,” European Journal of Pharmaceutical Sciences, vol. 39, no. 1–3, pp. 76–81, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. Y. Kudo and C. A. R. Boyd, “Mechanisms of transepithelial transport of amino acids in human placental syncytiotrophoblast,” Trophoblast Research, vol. 9, pp. 87–98, 1997. View at Google Scholar
  57. I. Cetin, “Placental transport of amino acids in normal and growth-restricted pregnancies,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 110, supplement 1, pp. S50–S54, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. R. M. Lewis, J. Glazier, S. L. Greenwood et al., “L-serine uptake by human placental microvillous membrane vesicles,” Placenta, vol. 28, no. 5-6, pp. 445–452, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. J. Hakkola, O. Pelkonen, M. Fasanen, and H. Raunio, “Xenobiotic-metabolizing cytochrome P450 enzymes in the human feto- placental unit: role in intrauterine toxicity,” Critical Reviews in Toxicology, vol. 28, no. 1, pp. 35–72, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. Yan, L. Matoney, and D. Yang, “Human carboxylesterases in term placentae: enzymatic characterization, molecular cloning and evidence for the existence of multiple forms,” Placenta, vol. 20, no. 7, pp. 599–607, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. P. Paakki, P. Kirkinen, H. L. Helin, O. Pelkonen, H. Raunio, and M. Pasanen, “Antepartum glucocorticoid therapy suppresses human placental xenobiotic and steroid metabolizing enzymes,” Placenta, vol. 21, no. 2-3, pp. 241–246, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. V. E. Murphy, R. J. Fittock, P. K. Zarzycki, M. M. Delahunty, R. Smith, and V. L. Clifton, “Metabolism of synthetic steroids by the human placenta,” Placenta, vol. 28, no. 1, pp. 39–46, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. K. Shiverick, K. Ino, T. Harada, J. Keelan, and F. Kikkawa, “Placental enzymes and transporters: new functions and genetic polymorphisms—a workshop report,” Placenta, vol. 28, pp. S125–S128, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. K. Annola, V. Karttunen, P. Keski-Rahkonen et al., “Transplacental transfer of acrylamide and glycidamide are comparable to that of antipyrine in perfused human placenta,” Toxicology Letters, vol. 182, no. 1–3, pp. 50–56, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. S. J. Hemauer, R. Yan, S. L. Patrikeeva et al., “Transplacental transfer and metabolism of 17-α-hydroxyprogesterone caproate,” American Journal of Obstetrics and Gynecology, vol. 199, no. 2, pp. 199.e1–169.e5, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. M. G. Papich and L. E. Davis, “Drug therapy during pregnancy and in the neonate,” Veterinary Clinics of North America—Small Animal Practice, vol. 16, no. 3, pp. 525–538, 1986. View at Google Scholar · View at Scopus
  67. S. D. Johnston, M. V. Root Kustritz, and P. Olson, Canine and Feline Theriogenology, WB Saunders, Philadelpia, Pa, USA, 1995.
  68. P. Coy Fuster, “Fisiología de la Gestación,” in Fisiologia Veterinaria, A. García Sacristán, F. Castejón Montijano, L. F. de la Cruz Palomino, J. González Gallego, M. D. Murillo Lopex de Silanes, and G. Salido Ruiz, Eds., pp. 861–875, Editorial Interamericana-MacGraw-Hill, Madrid, Spain, 1995. View at Google Scholar
  69. M. R. Raffe and R. E. Carpenter, “Anesthetic management of cesarean section patients,” in Lumb & Jones' Veterinary Anesthesia and Analgesia, W. J. Tranquilli, J. C. Thurmon, and K. A. Grimm, Eds., pp. 955–962, Blackwell, 4th edition, 2007. View at Google Scholar
  70. K. L. Mealey, S. A. Bentjen, J. M. Gay, and G. H. Cantor, “Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene,” Pharmacogenetics, vol. 11, no. 8, pp. 727–733, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. K. L. Mealey, N. C. Northrup, and S. A. Bentjen, “Increased toxicity of P-glycoprotein-substrate chemotherapeutic agents in a dog with the MDR1 deletion mutation associated with ivermectin sensitivity,” Journal of the American Veterinary Medical Association, vol. 223, no. 10, pp. 1453–1434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Fecht, A. Wöhlke, H. Hamann, and O. Distl, “Analysis of the canine mdr1-1Δ mutation in the dog breed elo,” Journal of Veterinary Medicine A, vol. 54, no. 8, pp. 401–405, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. M. M. Pulido, A. J. Molina, G. Merino, G. Mendoza, J. G. Prieto, and A. I. Alvarez, “Interaction of enrofloxacin with breast cancer resistance protein (BCRP/ABCG2): influence of flavonoids and role in milk secretion in sheep,” Journal of Veterinary Pharmacology and Therapeutics, vol. 29, no. 4, pp. 279–287, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. A. I. Alvarez, M. Pérez, J. G. Prieto, A. J. Molina, R. Real, and G. Merino, “Fluoroquinolone efflux mediated by ABC transporters,” Journal of Pharmaceutical Sciences, vol. 97, no. 9, pp. 3483–3493, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. A. L. VanWert, C. Srimaroeng, and D. H. Sweet, “Organic anion transporter 3 (Oat3/Slc22a8) interacts with carboxyfluoroquinolones, and deletion increases systemic exposure to ciprofloxacin,” Molecular Pharmacology, vol. 74, no. 1, pp. 122–131, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. B. R. Reed, “Dermatologic drugs, pregnancy, and lactation: a conservative guide,” Archives of Dermatology, vol. 133, no. 7, pp. 894–898, 1997. View at Google Scholar · View at Scopus
  77. H. A. Shehata and C. Nelson-Piercy, “Drugs to avoid,” Best Practice and Research: Clinical Obstetrics and Gynaecology, vol. 15, no. 6, pp. 971–986, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. U. Mahadevan, “Gastrointestinal medications in pregnancy,” Best Practice and Research: Clinical Gastroenterology, vol. 21, no. 5, pp. 849–877, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. A. Vallano and J. M. Arnau, “Antimicrobials and pregnancy,” Enfermedades Infecciosas y Microbiologia Clinica, vol. 27, no. 9, pp. 536–542, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. E. Garrido, M. van Domselaar, S. Morales, and A. López-Sanromán, “Inflammatory bowel disease and pregnancy,” Gastroenterologia y Hepatologia, vol. 33, no. 7, pp. 517–529, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. A. Einarson, E. Phillips, F. Mawji et al., “A prospective controlled multicentre study of clarithromycin in pregnancy,” American Journal of Perinatology, vol. 15, no. 9, pp. 523–525, 1998. View at Google Scholar · View at Scopus
  82. B. S. Apgar, G. Greenberg, and G. Yen, “Prevention of group B streptococcal disease in the newborn,” American Family Physician, vol. 71, no. 5, pp. 903–910, 2005. View at Google Scholar · View at Scopus
  83. H. Smaoui, J. P. Mallie, M. Schaeverbeke, A. Robert, and J. Schaeverbeke, “Gentamicin administered during gestation alters glomerular basement membrane development,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 7, pp. 1510–1517, 1993. View at Google Scholar · View at Scopus
  84. M. Suzuki, “Children's toxicology from bench to bed—drug-induced renal injury (4): effects of nephrotoxic compounds on fetal and developing kidney,” Journal of Toxicological Sciences, vol. 34, no. 2, pp. SP267–SP271, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Giamarellou, E. Kolokythas, G. Petrikkos, J. Gazis, D. Aravantinos, and P. Sfikakis, “Pharmacokinetics of three newer quinolones in pregnant and lactating women,” American Journal of Medicine, vol. 87, no. 5A, pp. 49S–51S, 1989. View at Google Scholar · View at Scopus
  86. B. Casey and R. E. Bawdon, “Ex vivo human placental transfer of trovafloxacin,” Infectious Diseases in Obstetrics and Gynecology, vol. 8, no. 5-6, pp. 228–229, 2000. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Polachek, G. Holcberg, G. Sapir et al., “Transfer of ciprofloxacin, ofloxacin and levofloxacin across the perfused human placenta in vitro,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 122, no. 1, pp. 61–65, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. E. Launay, N. Joram, C. Jacqueline et al., “Efficacy of ciprofloxacin in an experimental model of escherichia coli chorioamnionitis in rabbits,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 4, pp. 1624–1627, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. J. C. Kim, C. S. Bae, S. H. Kim et al., “Transplacental pharmacokinetics of the new fluoroquinolone DW-116 in pregnant rats,” Toxicology Letters, vol. 142, no. 1-2, pp. 103–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. J. E. Burkhardt, M. A. Hill, W. W. Carlton, and J. W. Kesterson, “Histologic and histochemical changes in articular cartilages of immature beagle dogs dosed with difloxacin, a fluoroquinolone,” Veterinary Pathology, vol. 27, no. 3, pp. 162–170, 1990. View at Google Scholar · View at Scopus
  91. M. Machida, H. Kusajima, H. Aijima, A. Maeda, R. Ishida, and H. Uchida, “Toxicokinetic study of norfloxacin-induced arthropathy in juvenile animals,” Toxicology and Applied Pharmacology, vol. 105, no. 3, pp. 403–412, 1990. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Nagai, M. Miyazaki, T. Morita et al., “Comparative articular toxicity of garenoxacin, a novel quinolone antimicrobial agent, in juvenile beagle dogs,” Journal of Toxicological Sciences, vol. 27, no. 3, pp. 219–228, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Kim, H. Ohtani, M. Tsujimoto, and Y. Sawada, “Quantitative comparison of the convulsive activity of combinations of twelve fluoroquinolones with five nonsteroidal antiinflammatory agents,” Drug Metabolism and Pharmacokinetics, vol. 24, no. 2, pp. 167–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Matsumoto, A. Akimoto, H. Kawashima, and S. Kim, “Comparative study of skin phototoxicity with three drugs by an in vivo mouse model,” Journal of Toxicological Sciences, vol. 35, no. 1, pp. 97–100, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. E. von Keutz and G. Schlüter, “Preclinical safety evaluation of moxifloxacin, a novel fluoroquinolone,” Journal of Antimicrobial Chemotherapy, vol. 43, pp. 91–100, 1999. View at Publisher · View at Google Scholar · View at Scopus
  96. V. Wiebe and P. Hamilton, “Fluoroquinolone-induced retinal degeneration in cats,” Journal of the American Veterinary Medical Association, vol. 221, no. 11, pp. 1568–1571, 2002. View at Google Scholar · View at Scopus
  97. L. S. Sandmeyer and B. H. Grahn, “Diagnostic ophthalmology. Retinal degeneration,” Canadian Veterinary Journal, vol. 49, no. 11, pp. 1141–1142, 2008. View at Google Scholar
  98. R. Stahlmann and R. Schwabe, “Safety profile of grepafloxacin compared with other fluoroquinolones,” Journal of Antimicrobial Chemotherapy, vol. 40, pp. 83–92, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. R. Loebstein, A. Addis, E. Ho et al., “Pregnancy outcome following gestational exposure to fluoroquinolones: a multicenter prospective controlled study,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 6, pp. 1336–1339, 1998. View at Google Scholar · View at Scopus
  100. P. Courvalin, “Can pharmacokinetic-pharmacodynamic parameters provide dosing regimens that are less vulnerable to resistance?” Clinical Microbiology and Infection, vol. 14, no. 11, pp. 989–994, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. J. A. Roberts, P. Kruger, D. L. Paterson, and J. Lipman, “Antibiotic resistance-What's dosing got to do with it?” Critical Care Medicine, vol. 36, no. 8, pp. 2433–2440, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus