Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011 (2011), Article ID 413240, 10 pages
http://dx.doi.org/10.4061/2011/413240
Research Article

Preventing the Establishment of a Wildlife Disease Reservoir: A Case Study of Bovine Tuberculosis in Wild Deer in Minnesota, USA

1Minnesota Department of Natural Resources, Wildlife Health Program, 5463-C West Broadway, Forest Lake, MN 55025, USA
2Minnesota Department of Natural Resources, Wildlife Research and Policy, 500 Lafayette Road, St. Paul, MN 55155, USA

Received 14 January 2011; Accepted 4 March 2011

Academic Editor: Mitchell V. Palmer

Copyright © 2011 Michelle Carstensen and Michael W. DonCarlos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Morris, D. U. Pfeiffer, and R. Jackson, “The epidemiology of Mycobacterium bovis infections,” Veterinary Microbiology, vol. 40, no. 1-2, pp. 153–177, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. L. A. L. Corner, “The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 303–312, 2006. View at Publisher · View at Google Scholar
  3. V. Naranjo, C. Gortazar, J. Vicente, and J. de la Fuente, “Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex,” Veterinary Microbiology, vol. 127, no. 1-2, pp. 1–9, 2008. View at Publisher · View at Google Scholar
  4. V. De Vos, R. G. Bengis, N. P. J. Kriek et al., “The epidemiology of tuberculosis in free-ranging African buffalo (Syncerus caffer) in the Kruger national park, South Africa,” Onderstepoort Journal of Veterinary Research, vol. 68, no. 2, pp. 119–130, 2001. View at Google Scholar · View at Scopus
  5. J. S. Nishi, T. Shury, and B. T. Elkin, “Wildlife reservoirs for bovine tuberculosis (Mycobacterium bovis) in Canada: strategies for management and research,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 325–338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. Delahay, A. N. S. De Leeuw, A. M. Barlow, R. S. Clifton-Hadley, and C. L. Cheeseman, “The status of Mycobacterium bovis infection in UK wild mammals: a review,” The Veterinary Journal, vol. 164, no. 2, pp. 90–105, 2002. View at Publisher · View at Google Scholar
  7. J. D. Coleman and M. M. Cooke, “Mycobacterium bovis infection in wildlife in New Zealand,” Tuberculosis, vol. 81, no. 3, pp. 191–202, 2001. View at Publisher · View at Google Scholar
  8. D. J. O'Brien, S. M. Schmitt, S. D. Fitzgerald, D. E. Berry, and G. J. Hickling, “Managing the wildlife reservoir of Mycobacterium bovis: the Michigan, USA, experience,” Veterinary Microbiology, vol. 112, no. 2–4, pp. 313–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Glaser, Minnesota’s Strategy for Eliminating Bovine Tuberculosis, Minnesota Board of Animal Health, St. Paul, Minn, USA, 2008.
  10. B. Harris, Mycobacterium Bovis Genotyping Report, National Veterinary Services Laboratory, Ames, Iowa, USA, 2009.
  11. M. Carstensen, D. Pauly, M. W. DonCarlos, and L. Cornicelli, “Managing bovine tuberculosis in free-ranging white-tailed deer in northwestern Minnesota: a 2007 progress report,” in Summaries of Wildlife Research Findings 2007, pp. 1–9, Minnesota Department of Natural Resources, Wildlife Population and Research Unit, St. Paul, Minn, USA, 2008. View at Google Scholar
  12. United States Department of Agriculture, Bovine Tuberculosis Eradication: Uniform Methods and Rules, Effective, January 2005, http://www.aphis.usda.gov/animal_health/animal_diseases/tuberculosis/downloads/tb-umr.pdf.
  13. M. V. Palmer and D. L. Whipple, “Survival of Mycobacterium bovis on feedstuffs commonly used as supplemental feed for white-tailed deer (Odocoileus virginianus),” Journal of Wildlife Diseases, vol. 42, no. 4, pp. 853–858, 2006. View at Google Scholar · View at Scopus
  14. L. Glaser, Minnesota Bovine Tuberculosis Eradication Program: Application for Split-State Status, Minnesota Board of Animal Health, St. Paul, Minn, USA, 2008.
  15. E. H. Hildebrand, M. Carstensen, E. Butler, and L. Cornicelli, “Preliminary results from herd health assessment for northwestern free-ranging elk from 2004–2009,” in Summaries of Wildlife Research Findings 2009, pp. 135–149, Minnesota Department of Natural Resources, Wildlife Population and Research Unit, St. Paul, Minn, USA, 2010. View at Google Scholar
  16. F. F. Gilbert, “Aging white-tailed deer by annuli in the cementum of the first incisor,” Journal of Wildlife Management, vol. 30, no. 1, pp. 200–202, 30. View at Google Scholar
  17. D. L. Stevens and A. R. Olsen, “Spatially balanced sampling of natural resources,” Journal of the American Statistical Association, vol. 99, no. 465, pp. 262–278, 2004. View at Google Scholar · View at Scopus
  18. B. Knust, P. C. Wolf, and S. Wells, “Use of an on-farm assessment to characterize risk,” American Journal of Veterinary Research. In press.
  19. S. M. Schmitt, S. D. Fitzgerald, T. M. Cooley et al., “Bovine tuberculosis in free-ranging white-tailed deer from Michigan,” Journal of Wildlife Diseases, vol. 33, no. 4, pp. 749–758, 1997. View at Google Scholar · View at Scopus
  20. C. S. Bruning-Fann, S. M. Schmitt, S. D. Fitzgerald et al., “Bovine tuberculosis in free-ranging carnivores from Michigan,” Journal of Wildlife Diseases, vol. 37, no. 1, pp. 58–64, 2001. View at Google Scholar · View at Scopus
  21. T. C. Atwood, T. J. Deliberto, H. J. Smith, J. S. Stevenson, and K. C. Vercauteren, “Spatial ecology of raccoons related to cattle and bovine tuberculosis in Northeastern Michigan,” Journal of Wildlife Management, vol. 73, no. 5, pp. 647–654, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. C. Atwood, K. C. Vercauteren, T. J. Deliberto, H. J. Smith, and J. S. Stevenson, “Coyotes as sentinels for monitoring bovine tuberculosis prevalence in white-tailed deer,” Journal of Wildlife Management, vol. 71, no. 5, pp. 1545–1554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Sangster, D. Bergeson, C. Lutze-Wallace, V. Crichton, and G. Wobeser, “Feasibility of using coyotes (Canis latrans) as sentinels for bovine mycobacteriosis (Mycobacterium bovis) infection in wild cervids in and around riding Mountain National Park, Manitoba, Canada,” Journal of Wildlife Diseases, vol. 43, no. 3, pp. 432–438, 2007. View at Google Scholar · View at Scopus
  24. D. J. O'Brien, S. M. Schmitt, D. E. Berry et al., “Estimating the true prevalence of Mycobacterium bovis in hunter-harvested white-tailed deer in Michigan,” Journal of Wildlife Diseases, vol. 40, no. 1, pp. 42–52, 2004. View at Google Scholar
  25. D. J. O'Brien, S. M. Schmitt, J. S. Fierke et al., “Epidemiology of Mycobacterium bovis in free-ranging white-tailed deer, Michigan, USA, 1995–2000,” Preventive Veterinary Medicine, vol. 54, no. 1, pp. 47–63, 2002. View at Publisher · View at Google Scholar
  26. M. Schermann and S. Wells, Bovine Tuberculosis Transmission and Control Initiative: Final Report, Center for Animal Health and Food Safety, University of Minnesota, St. Paul, Minn, USA, 2010.
  27. T. R. Van Deelen and D. R. Etter, “Effort and the functional response of deer hunters,” Human Dimensions of Wildlife, vol. 8, pp. 97–108, 2003. View at Google Scholar
  28. B. A. Rudolph, S. J. Riley, G. J. Hickling, B. J. Frawley, M. S. Garner, and S. R. Winterstein, “Regulating hunter baiting for white-tailed deer in Michigan: biological and social considerations,” Wildlife Society Bulletin, vol. 34, no. 2, pp. 314–321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Thompson, Minnesota’s Bovine Tuberculosis Management Plan, Minnesota Board of Animal Health, St. Paul, Minn, USA, 2010.
  30. M. Carstensen, D. J. O'Brien, and S. M. Schmitt, “Public acceptance as a determinant of management strategies for bovine tuberculosis in free-ranging U.S. wildlife,” Veterinary Microbiology. In press. View at Publisher · View at Google Scholar