Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011, Article ID 613602, 7 pages
http://dx.doi.org/10.4061/2011/613602
Review Article

The Role of Liver Biopsy in Detection of Hepatic Oxidative Stress

Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt

Received 10 December 2010; Revised 30 December 2010; Accepted 7 January 2011

Academic Editor: Cristina Castillo Rodríguez

Copyright © 2011 Mahmoud Rushdi Abd Ellah. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. R. Abd Ellah, “Involvement of free radicals in animal diseases,” Comparative Clinical Pathology, vol. 19, no. 6, pp. 615–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Poli, “Liver damage due to free radicals,” British Medical Bulletin, vol. 49, no. 3, pp. 604–620, 1993. View at Google Scholar · View at Scopus
  3. M. Comporti, “Lipid peroxidation and cellular damage in toxic liver injury,” Laboratory Investigation, vol. 53, no. 6, pp. 599–623, 1985. View at Google Scholar · View at Scopus
  4. G. Poli, E. Albano, and M. U. Dianzani, “The role of lipid peroxidation in liver damage,” Chemistry and Physics of Lipids, vol. 45, no. 2–4, pp. 117–142, 1987. View at Google Scholar · View at Scopus
  5. M. Zern, M. Czaja, and F. Weiner, “The use of molecular hybridization techniques as tools to evaluate hepatic fibrogenesis,” in Connective Tissue in Health and Disease, M. Rojkind, Ed., pp. 99–122, Boca Raton, Fla, USA, CRC Press, 1990. View at Google Scholar
  6. L. Y. Tsai, K. T. Lee, S. M. Tsai, S. C. Lee, and H. S. Yu, “Changes of lipid peroxide levels in blood and liver tissue of patients with obstructive jaundice,” Clinica Chimica Acta, vol. 215, no. 1, pp. 41–50, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. N. De Maria, A. Colantoni, S. Fagiuoli et al., “Association between reactive oxygen species and disease activity in chronic hepatitis C,” Free Radical Biology and Medicine, vol. 21, no. 3, pp. 291–295, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Gonzalez-Correa, J. P. De La Cruz, E. Martin-Aurioles, M. A. Lopez-Egea, P. Ortiz, and F. Sanchez De La Cuesta, “Effects of S-adenosyl-L-methionine on hepatic and renal oxidative stress in an experimental model of acute biliary obstruction in rats,” Hepatology, vol. 26, no. 1, pp. 121–127, 1997. View at Google Scholar · View at Scopus
  9. V. Paradis, P. Mathurin, M. Kollinger et al., “In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features,” Journal of Clinical Pathology, vol. 50, no. 5, pp. 401–406, 1997. View at Google Scholar · View at Scopus
  10. J. Fehér, G. Lengyel, and A. Blázovics, “Oxidative stress in the liver and biliary tract diseases,” Scandinavian Journal of Gastroenterology, vol. 228, pp. 38–46, 1998. View at Google Scholar · View at Scopus
  11. J. L. Wallace and M. J. S. Miller, “Nitric oxide in mucosal defense: a little goes a long way,” Gastroenterology, vol. 119, no. 2, pp. 512–520, 2000. View at Google Scholar · View at Scopus
  12. C. Spiral, M. H. Nathanson, R. Fiorotto et al., “Proinflammatory cytokines inhibit secretion in rat bile duct epithelium,” Gastroenterology, vol. 121, no. 1, pp. 156–169, 2001. View at Google Scholar · View at Scopus
  13. G. Alpini, J. M. McGill, and N. F. LaRusso, “The pathobiology of biliary epithelia,” Hepatology, vol. 35, no. 5, pp. 1256–1268, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. L. Cesaratto, C. Vascotto, S. Calligaris, and G. Tell, “The importance of redox state in liver damage,” Annals of Hepatology, vol. 3, no. 3, pp. 86–92, 2004. View at Google Scholar · View at Scopus
  15. E. Jabłonowska, H. Tchórzewski, P. Lewkowicz, and J. Kuydowicz, “Reactive oxygen intermediates and serum antioxidative system in patients with chronic C hepatitis treated with IFN-α and thymus factor X,” Archivum Immunologiae et Therapiae Experimentalis, vol. 53, no. 6, pp. 529–533, 2005. View at Google Scholar · View at Scopus
  16. A. A. Khan, D. Lovejoy, A. K. Sharma, R. M. Sharma, M. G. Prior, and L. E. Lillie, “Effects of high dietary sulphur on enzyme activities, selenium concentrations and body weights of cattle,” Canadian Journal of Veterinary Research, vol. 51, no. 2, pp. 174–180, 1987. View at Google Scholar · View at Scopus
  17. P. Mudron, J. Rehage, H. P. Sallmann, M. Mertens, H. Scholz, and G. Kovac, “Plasma and liver alpha-tocopherol in dairy cows with left abomasal displacement and fatty liver,” Zentralblatt für Veterinärmedizin. Reihe A, vol. 44, no. 2, pp. 91–97, 1997. View at Google Scholar · View at Scopus
  18. P. Mudron, J. Rehage, K. Qualmann, H. P. Sallmann, and H. Scholz, “A study of lipid peroxidation and vitamin E in dairy cows with hepatic insufficiency,” Zentralblatt für Veterinärmedizin. Reihe A, vol. 46, no. 4, pp. 219–224, 1999. View at Google Scholar · View at Scopus
  19. Z. Spolarics, “A carbohydrate-rich diet stimulates glucose-6-phosphate dehydrogenase expression in hepatic sinusoidal endothelial cells,” Journal of Nutrition, vol. 129, no. 1, pp. 103–108, 1999. View at Google Scholar · View at Scopus
  20. A. Sansinanea, S. Cerone, G. Virkel, S. Streitenberger, M. Garcia, and N. Auza, “Nutritional condition affects the hepatic antioxidant systems in steers,” Veterinary Research Communications, vol. 24, no. 8, pp. 517–525, 2000. View at Google Scholar · View at Scopus
  21. M. R. Abd Ellah, K. Nishimori, M. Goryo, K. Okada, and J. Yasuda, “Glucose 6-phosphate dehydrogenase and glutathione peroxidase activities in hepatic abscesses of cattle,” Veterinary Biochemistry, vol. 39, no. 2, pp. 25–30, 2002. View at Google Scholar · View at Scopus
  22. M. R. Abd Ellah, K. Nishimori, M. Goryo, K. Okada, and J. Yasuda, “Glutathione peroxidase and glucose6-phosphate dehydrogenase activities in bovine blood and liver,” Journal of Veterinary Medical Science, vol. 66, no. 10, pp. 1219–1221, 2004. View at Google Scholar · View at Scopus
  23. M. R. Abd Ellah, M. Goryo, K. Okada, and J. Yasuda, “Glutathione peroxidase and glucose6-phosphate dehydrogenase activities in bovine blood and liver,” Journal of Veterinary Medical Science, vol. 66, no. 10, pp. 1219–1221, 2004. View at Google Scholar · View at Scopus
  24. M. R. Abd Ellah, K. Okada, M. Goryo, S. Kobayashi, A. Oishi, and J. Yasuda, “Total glutathione and glutathione reductase in bovine erythrocytes and liver biopsy,” Journal of Veterinary Medical Science, vol. 70, no. 8, pp. 861–864, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. M. R. Abd Ellah, K. Okada, M. Goryo, A. Oishi, and J. Yasuda, “Superoxide dismutase activity as a measure of hepatic oxidative stress in cattle following ethionine administration,” Veterinary Journal, vol. 182, no. 2, pp. 336–341, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. F. Farinati, R. Cardin, N. De Maria et al., “Iron storage, lipid peroxidation and glutathione turnover in chronic anti-HCV positive hepatitis,” Journal of Hepatology, vol. 22, no. 4, pp. 449–456, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Barbaro, G. D. Lorenzo, M. Ribersani et al., “Serum ferritin and hepatic glutathione concentrations in chronic hepatitis C patients related to the hepatitis C virus genotype,” Journal of Hepatology, vol. 30, no. 5, pp. 774–782, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. Videla, R. Rodrigo, M. Orellana et al., “Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients,” Clinical Science, vol. 106, no. 3, pp. 261–268, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. H. Czeczot, D. Ścibior, M. Skrzycki, and M. Podsiad, “Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma,” Acta Biochimica Polonica, vol. 53, no. 1, pp. 237–241, 2006. View at Google Scholar · View at Scopus
  30. B. Dalgiç, N. Sönmez, G. Biberoǧlu, A. Hasanoǧlu, and D. Erbaş, “Evaluation of oxidant stress in Wilson's disease and non-Wilsonian chronic liver disease in childhood,” Turkish Journal of Gastroenterology, vol. 16, no. 1, pp. 7–11, 2005. View at Google Scholar · View at Scopus
  31. S. J. Stohs, “The role of free radicals in toxicity and disease,” Journal of Basic and Clinical Physiology and Pharmacology, vol. 6, no. 3-4, pp. 205–228, 1995. View at Google Scholar · View at Scopus
  32. J. Lunec, “Free radicals: their involvement in disease processes,” Annals of Clinical Biochemistry, vol. 27, no. 3, pp. 173–182, 1990. View at Google Scholar · View at Scopus
  33. D. S. Bredt and S. H. Snyder, “Nitric oxide: a physiological messenger molecule,” Annual Review of Biochemistry, vol. 63, pp. 175–195, 1994. View at Google Scholar · View at Scopus
  34. S. J. Stohs and D. Bagchi, “Oxidative mechanisms in the toxicity of metal ions,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 321–336, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Samuni, M. Chevion, and G. Czapski, “Unusual copper-induced sensitization of the biological damage due to superoxide radicals,” Journal of Biological Chemistry, vol. 256, no. 24, pp. 12632–12635, 1981. View at Google Scholar · View at Scopus
  36. J. Feher, A. Vereckei, and G. Lengyel, “Role of free-radical reactions in liver diseases,” Acta Physiologica Hungarica, vol. 80, no. 1–4, pp. 351–361, 1992. View at Google Scholar · View at Scopus
  37. T. Ogino and S. Okada, “Oxidative damage of bovine serum albumin and other enzyme proteins by iron-chelate complexes,” Biochimica et Biophysica Acta, vol. 1245, no. 3, pp. 359–365, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. J. K. Miller, E. Brzezinska-Slebodzinska, and F. C. Madsen, “Oxidative stress, antioxidants, and animal function,” Journal of Dairy Science, vol. 76, no. 9, pp. 2812–2823, 1993. View at Google Scholar · View at Scopus
  39. P. A. Southorn and G. Powis, “Free radicals in medicine. II. Involvement in human disease,” Mayo Clinic Proceedings, vol. 63, no. 4, pp. 390–408, 1988. View at Google Scholar · View at Scopus
  40. J. M. McCord, “Oxygen-derived free radicals,” New Horizons, vol. 1, no. 1, pp. 70–76, 1993. View at Google Scholar · View at Scopus
  41. W. F. Petrone, D. K. English, K. Wong, and J. M. McCord, “Free radicals and inflammation: superoxide-dependent activation of a neutrophil chemotactic factor in plasma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 2, pp. 1159–1163, 1980. View at Google Scholar · View at Scopus
  42. S. Moncada and A. Higgs, “The L-arginine-nitric oxide pathway,” New England Journal of Medicine, vol. 329, no. 27, pp. 2002–2012, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. R. J. Sokol, M. W. Devereaux, K. O'Brien, R. A. Khandwala, and J. P. Loehr, “Abnormal hepatic mitochondrial respiration and cytochrome C oxidase activity in rats with long-term copper overload,” Gastroenterology, vol. 105, no. 1, pp. 178–187, 1993. View at Google Scholar · View at Scopus
  44. R. J. Sokol, D. Twedt, J. M. McKim et al., “Oxidant injury to hepatic mitochondria in patients with Wilson's disease and Bedlington terriers with copper toxicosis,” Gastroenterology, vol. 107, no. 6, pp. 1788–1798, 1994. View at Google Scholar · View at Scopus
  45. B. R. Bacon, R. O'Neill, and R. S. Britton, “Hepatic mitochondrial energy production in rats with chronic iron overload,” Gastroenterology, vol. 105, no. 4, pp. 1134–1140, 1993. View at Google Scholar · View at Scopus
  46. A. Par and T. Javor, “Alternatives in hepatoprotection: cytoprotection-influences on mono-oxidase system—free radical scavengers. (A review),” Acta Physiologica Hungarica, vol. 64, no. 3-4, pp. 409–423, 1984. View at Google Scholar · View at Scopus
  47. B. Halliwell, “Reactive oxygen species in living systems: source, biochemistry and role in human disease,” American Journal of Medicine, vol. 91, p. 1422, 1991. View at Google Scholar · View at Scopus
  48. B. Halliwell, “Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?” Lancet, vol. 344, no. 8924, pp. 721–724, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Sies, Oxidative Stress: Oxidants and Antioxidants, Academic Press, London, UK, 1991.
  50. M. Trevisan, R. Browne, M. Ram et al., “Correlates of markers of oxidative status in the general population,” American Journal of Epidemiology, vol. 154, no. 4, pp. 348–356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. R. J. Nauta, E. Tsimoyiannis, M. Uribe, D. B. Walsh, D. Miller, and A. Butterfield, “Oxygen-derived free radicals in hepatic ischemia and reperfusion injury in the rat,” Surgery Gynecology and Obstetrics, vol. 171, no. 2, pp. 120–125, 1990. View at Google Scholar · View at Scopus
  52. C. A. Brass, J. Narciso, and J. L. Gollan, “Enhanced activity of the free radical producing enzyme xanthine oxidase in hypoxic rat liver,” Journal of Clinical Investigation, vol. 87, no. 2, pp. 424–431, 1991. View at Google Scholar · View at Scopus
  53. B. G. Rosser and G. J. Gores, “Liver cell necrosis: cellular mechanisms and clinical implications,” Gastroenterology, vol. 108, no. 1, pp. 252–275, 1995. View at Publisher · View at Google Scholar · View at Scopus
  54. M. J.P. Arthur, I. S. Bentley, and A. R. Tanner, “Oxygen-derived free radicals promote hepatic injury in the rat,” Gastroenterology, vol. 89, no. 5, pp. 1114–1122, 1985. View at Google Scholar
  55. G. Bianchi, G. Marchesini, A. Fabbri, M. Ronchi, R. Chianese, and G. Grossi, “Lipoperoxide plasma levels in patients with liver cirrhosis,” Hepatogastroenterology, vol. 44, no. 15, pp. 784–788, 1997. View at Google Scholar · View at Scopus
  56. D. Pessayre, A. Berson, B. Fromenty, and A. Mansouri, “Mitochondria in steatohepatitis,” Seminars in Liver Disease, vol. 21, no. 1, pp. 57–69, 2001. View at Google Scholar · View at Scopus
  57. Z. M. Younossi, A. M. Diehl, and J. P. Ong, “Nonalcoholic fatty liver disease: an agenda for clinical research,” Hepatology, vol. 35, no. 4, pp. 746–752, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. P. Vajdovich, “Measurements of oxidative stress,” Veterinary Clinical Pathology, vol. 30, p. 158, 2001. View at Google Scholar
  59. J. Deutsch, “G6PD assay,” in Methods in Enzymatic Analysis, H. U. Bergmeyer, Ed., vol. 3, p. 190, Academic Press, New York, NY, USA, 1983. View at Google Scholar
  60. A. Mansouri, I. Gaou, B. Fromenty et al., “Premature oxidative aging of hepatic mitochondrial DNA in Wilson's disease,” Gastroenterology, vol. 113, no. 2, pp. 599–605, 1997. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Akkuş, F. Gültekin, M. Aköz et al., “Effect of moderate alcohol intake on lipid peroxidation in plasma, erythrocyte and leukocyte and on some antioxidant enzymes,” Clinica Chimica Acta, vol. 266, no. 2, pp. 141–147, 1997. View at Publisher · View at Google Scholar
  62. U. Johansson, F. Johnsson, and B. Joelsson, “Selenium status in patients with liver cirrhosis and alcoholism,” British Journal of Nutrition, vol. 55, no. 2, pp. 227–233, 1986. View at Google Scholar
  63. A. R. Tanner, I. Bantock, and L. Hinks, “Depressed selenium and vitamin E levels in an alcoholic population. Possible relationship to hepatic injury through increased lipid peroxidation,” Digestive Diseases and Sciences, vol. 31, no. 12, pp. 1307–1312, 1986. View at Google Scholar
  64. J. Czuczejko, B. A. Zachara, E. Staubach-Topczewska, W. Halota, and J. Kedziora, “Selenium, glutathione and glutathione peroxidases in blood of patients with chronic liver diseases,” Acta Biochimica Polonica, vol. 50, no. 4, pp. 1147–1154, 2003. View at Google Scholar · View at Scopus
  65. M. H. Yasa, M. Kacmaz, H. S. Ozturk, and I. Durak, “Antioxidant status of erythrocytes from patients with cirrhosis,” Hepatogastroenterology, vol. 46, no. 28, pp. 2460–2463, 1999. View at Google Scholar · View at Scopus
  66. A. M. Chrobot, A. Szaflarska-Szczepanik, and G. Drewa, “Antioxidant defense in children with chronic viral hepatitis B and C,” Medical Science Monitor, vol. 6, no. 4, pp. 713–718, 2000. View at Google Scholar · View at Scopus
  67. S. G. Pak and E. V. Nikitin, “Status of the processes of free radical oxidation and antioxidation system in patients with a severe course of hepatitis B,” Klinicheskaya Meditsina, vol. 69, no. 9, pp. 54–57, 1991. View at Google Scholar · View at Scopus
  68. S. Noori, N. Arendt, M. Qureshi, and T. Mahboob, “Reduction of carbon tetrachloride-induced rat liver injury by coffee and green tea,” Pakistan Journal of Nutrition, vol. 8, no. 4, pp. 452–458, 2009. View at Google Scholar
  69. J. Madill, B. M. Arendt, E. Aghdassi et al., “Hepatic lipid peroxidation and antioxidant micronutrients in HCV liver transplant patients with and without disease recurrence,” Transplantation Proceedings, vol. 41, no. 9, pp. 3800–3805, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. N. A. Ismail, S. H. Okasha, A. Dhawan, A. O. Abdel-Rahman, O. G. Shaker, and N. A. Sadik, “Antioxidant enzyme activities in hepatic tissue from children with chronic cholestatic liver disease,” Saudi Journal of Gastroenterology, vol. 16, no. 2, pp. 90–94, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. H. Togashi, H. Shinzawa, H. Wakabayashi et al., “Activities of free oxygen radical scavenger enzymes in human liver,” Journal of Hepatology, vol. 11, no. 2, pp. 200–205, 1990. View at Publisher · View at Google Scholar · View at Scopus
  72. J. S. S. G. De Jong, W. M. Frederiks, and C. J. F. Van Noorden, “Oxygen insensitivity of the histochemical assay of glucose-6-phosphate dehydrogenase activity for the detection of (pre)neoplasm in rat liver,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 5, pp. 565–571, 2001. View at Google Scholar · View at Scopus
  73. N. Sanz, C. Díez-Fernández, A. M. Valverde, M. Lorenzo, M. Benito, and M. Cascales, “Malic enzyme and glucose 6-phosphate dehydrogenase gene expression increases in rat liver cirrhogenesis,” British Journal of Cancer, vol. 75, no. 4, pp. 487–492, 1997. View at Google Scholar · View at Scopus
  74. N. A. Ismail, S. H. Okasha, A. Dhawan, A. M. O. Abdel Rahman, O. G. Shaker, and N. A. H. Sadik, “Glutathione peroxidase, superoxide dismutase and catalase activities in hepatic tissue from children with glycogen storage disease,” Archives of Medical Science, vol. 5, no. 1, pp. 86–90, 2009. View at Google Scholar · View at Scopus