Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011, Article ID 629409, 7 pages
http://dx.doi.org/10.4061/2011/629409
Review Article

Xenografting as a Tool to Preserve Endangered Species: Outcomes and Challenges in Model Systems

1Center for Neuroscience and Cell Biology, Department of Life Sciences, University of Coimbra, P.O. Box/Apartado 3046, 3001-401 Coimbra, Portugal
2Centre of Reproductive Medicine and Andrology, University of Münster, Domagkstraße 11, 48149 Münster, Germany

Received 1 June 2010; Accepted 16 August 2010

Academic Editor: Ali Honaramooz

Copyright © 2011 Paula C. Mota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Voronoff, Rejuvenation by Grafting, Adelphi, New York, NY, USA, 1925, translation edited by F. F. Imianitoff.
  2. C. D. Turner and H. Asakawa, “Complete spermatogenesis in intratesticular homotransplants of fetal and neonatal testes in the rat,” Proceedings of the Society for Experimental Biology and Medicine, vol. 112, pp. 132–135, 1963. View at Google Scholar
  3. T. Kuopio, P. O. Savouras, L. J. Pelliniemi, and I. T. Huhtaniemi, “Transplantation of newborn rat testis under the kidney capsule of adult host as a model to study the structure and function of Leydig cells,” Journal of Andrology, vol. 10, no. 5, pp. 335–345, 1989. View at Google Scholar · View at Scopus
  4. L. Johnson, L. C. Suggs, Y. M. Norton, and W. C. Zeh, “Effect of developmental age or time after transplantation on Sertoli cell number and testicular size in inbred Fischer rats,” Biology of Reproduction, vol. 54, no. 5, pp. 948–959, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Honaramooz, A. Snedaker, M. Boiani, H. Schöler, I. Dobrinski, and S. Schlatt, “Sperm from neonatal mammalia testes grafted in mice,” Nature, vol. 418, no. 6899, pp. 778–781, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. T. Shinohara, K. Inoue, N. Ogonuki et al., “Birth of offspring following transplantation of cyropreserved immature testicular pieces and in-vitro microinsemination,” Human Reproduction, vol. 17, no. 12, pp. 3039–3045, 2002. View at Google Scholar · View at Scopus
  7. S. Schlatt, A. Honaramooz, M. Boiani, H. R. Schöler, and I. Dobrinski, “Progeny from sperm obtained after ectopic grafting of neonatal mouse testes,” Biology of Reproduction, vol. 68, no. 6, pp. 2331–2335, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. Rathi, W. Zeng, S. Megee, A. Conley, S. Meyers, and I. Dobrinski, “Maturation of testicular tissue from infant monkeys after xenografting into mice,” Endocrinology, vol. 149, no. 10, pp. 5288–5296, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. W. Zeng, A. K. Snedaker, S. Megee et al., “Preservation and transplantation of porcine testis tissue,” Reproduction, Fertility and Development, vol. 21, no. 3, pp. 489–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. J. Paris and S. Schlatt, “Ovarian and testicular tissue xenografting: its potential for germline preservation of companion animals, non-domestic and endangered species,” Reproduction, Fertility and Development, vol. 19, no. 6, pp. 771–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Schlatt, S. S. Kim, and R. Gosden, “Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts,” Reproduction, vol. 124, no. 3, pp. 339–346, 2002. View at Google Scholar · View at Scopus
  12. S. Schlatt, B. Westernströer, K. Gassei, and J. Ehmcke, “Donor-host involvement in immature rat testis xenografting into nude mouse hosts,” Biology of Reproduction, vol. 82, no. 5, pp. 888–895, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Ehmcke, K. Gassei, and S. Schlatt, “Ectopic testicular xenografts from newborn hamsters (Phodopus sungorus) show better spermatogenic activity in aged compared with young recipients,” Journal of Experimental Zoology A, vol. 309, no. 5, pp. 278–287, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. J. M. Oatley, D. M. de Avila, J. J. Reeves, and D. J. McLean, “Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue,” Biology of Reproduction, vol. 71, no. 2, pp. 494–501, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. M. Oatley, J. J. Reeves, and D. J. McLean, “Establishment of spermatogenesis in neonatal bovine testicular tissue following ectopic xenografting varies with donor age,” Biology of Reproduction, vol. 72, no. 2, pp. 358–364, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. A. Schmidt, J. M. de Avila, and D. J. McLean, “Effect of vascular endothelial growth factor and testis tissue culture on spermatogenesis in bovine ectopic testis tissue xenografts,” Biology of Reproduction, vol. 75, no. 2, pp. 167–175, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. S. Huang, B. L. Sartini, and J. E. Parks, “Spermatogenesis in testis xenografts grafted from pre-pubertal Holstein bulls is re-established by stem cell or early spermatogonia,” Animal Reproduction Science, vol. 103, no. 1-2, pp. 1–12, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. Honaramooz, W. Zeng, R. Rathi, J. Koster, O. Ryder, and I. Dobrinski, “193 testis tissue xenografts to preserve germ cells from a cloned banteng calf,” Reproduction, Fertility and Development, vol. 17, no. 2, p. 247, 2005. View at Google Scholar
  19. L. Arregui, R. Rathi, S. O. Megee et al., “Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates,” Reproduction, vol. 136, no. 1, pp. 85–93, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. J. R. Rodriguez-Sosa, R. A. Foster, and A. Hahnel, “Development of strips of ovine testes after xenografting under the skin of mice and co-transplantation of exogenous spermatogonia with grafts,” Reproduction, vol. 139, no. 1, pp. 227–235, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. W. Zeng, G. F. Avelar, R. Rathi, L. R. Franca, and I. Dobrinski, “The length of the spermatogenic cycle is conserved in porcine and ovine testis xenografts,” Journal of Andrology, vol. 27, no. 4, pp. 527–533, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. Honaramooz, X.-S. Cui, N.-H. Kim, and I. Dobrinski, “Porcine embryos produced after intracytoplasmic sperm injection using xenogeneic pig sperm from neonatal testis tissue grafted in mice,” Reproduction, Fertility and Development, vol. 20, no. 7, pp. 802–807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Abrishami, M. Anzar, Y. Yang, and A. Honaramooz, “Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice,” Theriogenology, vol. 73, no. 1, pp. 86–96, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. M. Nakai, H. Kaneko, T. Somfai et al., “Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts,” Reproduction, vol. 139, no. 2, pp. 331–335, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. Rathi, A. Honaramooz, W. Zeng, R. Turner, and I. Dobrinski, “Germ cell development in equine testis tissue xenografted into mice,” Reproduction, vol. 131, no. 6, pp. 1091–1098, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. A. K. Snedaker, A. Honaramooz, and I. Dobrinski, “A game of cat and mouse: xenografting of testis tissue from domestic kittens results in complete cat spermatogenesis in a mouse host,” Journal of Andrology, vol. 25, no. 6, pp. 926–930, 2004. View at Google Scholar · View at Scopus
  27. M. Abrishami, S. Abbasi, and A. Honaramooz, “The effect of donor age on progression of spermatogenesis in canine testicular tissue after xenografting into immunodeficient mice,” Theriogenology, vol. 73, no. 4, pp. 512–522, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. Song and F. G. Silversides, “Production of offspring from cryopreserved chicken testicular tissue,” Poultry Science, vol. 86, no. 7, pp. 1390–1396, 2007. View at Google Scholar · View at Scopus
  29. Y. Kim, V. Selvaraj, B. Pukazhenthi, and A. J. Travis, “Effect of donor age on success of spermatogenesis in feline testis xenografts,” Reproduction, Fertility and Development, vol. 19, no. 7, pp. 869–876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Arregui, R. Rathi, W. Zeng et al., “Xenografting of adult mammalian testis tissue,” Animal Reproduction Science, vol. 106, no. 1-2, pp. 65–76, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. F. J. Karsh, “Reproduction in mammals,” in Book 3: Hormonal Control of Reproduction, C. R. Austin and R. V. Short, Eds., pp. 1–21, Cambridge University Press, Cambridge, UK, 1997. View at Google Scholar
  32. M. D. Li and J. J. Ford, “A comprehensive evolutionary analysis based on nucleotide and amino acid sequences of the α- and β-subunits of glycoprotein hormone gene family,” Journal of Endocrinology, vol. 156, no. 3, pp. 529–542, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Wistuba, M. Mundry, C. M. Luetjens, and S. Schlatt, “CoGrafting of hamster (Phodopus sungorus) and marmoset (Callithrix jacchus) testicular tissues into nude mice does not overcome blockade of early spermatogenic differentiation in primate grafts,” Biology of Reproduction, vol. 71, no. 6, pp. 2087–2091, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. Gromoll, J. Wistuba, N. Terwort, M. Godmann, T. Müller, and M. Simoni, “A new subclass of the luteinizing hormone/chorionic gonadotropin receptor lacking exon 10 messenger RNA in the new world monkey (Platyrrhini) lineage,” Biology of Reproduction, vol. 69, no. 1, pp. 75–80, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. C. M. Luetjens, J.-B. Stukenborg, E. Nieschlag, M. Simoni, and J. Wistuba, “Complete spermatogenesis in orthotopic but not in ectopic transplants of autologously grafted marmoset testicular tissue,” Endocrinology, vol. 149, no. 4, pp. 1736–1747, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. Honaramooz, M.-W. Li, M. C. T. Penedo, S. Meyers, and I. Dobrinski, “Accelerated maturation of primate testis by xenografting into mice,” Biology of Reproduction, vol. 70, no. 5, pp. 1500–1503, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. H. Kaneko, K. Kikuchi, M. Nakai, and J. Noguchi, “Endocrine status and development of porcine testicular tissues in host mice,” Journal of Reproduction and Development, vol. 54, no. 6, pp. 480–485, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Rathi, A. Honaramooz, W. Zeng, S. Schlatt, and I. Dobrinski, “Germ cell fate and seminiferous tuble development in bovine testis xenografts,” Reproduction, vol. 130, no. 6, pp. 923–929, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. K. C. Caires, J. de Avila, and D. J. McLean, “Vascular endothelial growth factor regulates germ cell survival during establishment of spermatogenesis in the bovine testis,” Reproduction, vol. 138, no. 4, pp. 667–677, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. J. A. Schmidt, J. M. de Avila, and D. J. McLean, “Analysis of gene expression in bovine testis tissue prior to ectopic testis tissue xenografting and during the grafting period,” Biology of Reproduction, vol. 76, no. 6, pp. 1071–1080, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. I. F. Lissbrant, E. Lissbrant, A. Persson, J.-E. Damber, and A. Bergh, “Endothelial cell proliferation in male reproductive organs of adult rat is high and regulated by testicular factors,” Biology of Reproduction, vol. 68, no. 4, pp. 1107–1111, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. Mayerhofer, A. P. Sinha Hikim, A. Bartke, and L. D. Russell, “Changes in the testicular microvasculature during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster,” Anatomical Record, vol. 224, no. 4, pp. 495–507, 1989. View at Google Scholar · View at Scopus
  43. K. Jahnukainen, J. Ehmcke, S. D. Hergenrother, and S. Schlatt, “Effect of cold storage and cryopreservation of immature non-human primate testicular tissue on spermatogonial stem cell potential in xenografts,” Human Reproduction, vol. 22, no. 4, pp. 1060–1067, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. V. Keros, B. Rosenlund, K. Hultenby, L. Aghajanova, L. Levkov, and O. Hovatta, “Optimizing cryopreservation of human testicular tissue: comparison of protocols with glycerol, propanediol and dimethylsulphoxide as cryoprotectants,” Human Reproduction, vol. 20, no. 6, pp. 1676–1687, 2005. View at Publisher · View at Google Scholar · View at PubMed
  45. V. Keros, K. Hultenby, B. Borgström, M. Fridström, K. Jahnukainen, and O. Hovatta, “Methods of cryopreservation of testicular tissue with viable spermatogonia in pre-pubertal boys undergoing gonadotoxic cancer treatment,” Human Reproduction, vol. 22, no. 5, pp. 1384–1395, 2007. View at Publisher · View at Google Scholar · View at PubMed
  46. C. Wyns, M. Curaba, B. Martinez-Madrid, A. Van Langendonckt, W. François-Xavier, and J. Donnez, “Spermatogonial survival after cryopreservation and short-term orthotopic immature human cryptorchid testicular tissue grafting to immunodeficient mice,” Human Reproduction, vol. 22, no. 6, pp. 1603–1611, 2007. View at Publisher · View at Google Scholar · View at PubMed
  47. C. Wyns, A. van Langendonckt, F.-X. Wese, J. Donnez, and M. Curaba, “Long-term spermatogonial survival in cryopreserved and xenografted immature human testicular tissue,” Human Reproduction, vol. 23, no. 11, pp. 2402–2414, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. T. G. McEvoy, F. M. Alink, V. C. Moreira, R. G. Watt, and K. A. Powell, “Embryo technologies and animal health—consequences for the animal following ovum pick-up, in vitro embryo production and somatic cell nuclear transfer,” Theriogenology, vol. 65, no. 5, pp. 926–942, 2006. View at Publisher · View at Google Scholar · View at PubMed
  49. K. Kikuchi, N. Kashiwazaki, T. Nagai et al., “Selected aspects of advanced porcine reproductive technology,” Reproduction in Domestic Animals, vol. 43, supplement 2, pp. 401–406, 2008. View at Publisher · View at Google Scholar · View at PubMed
  50. C. E. Pope, M. C. Gomez, and B. L. Dresser, “In vitro embryo production and embryo transfer in domestic and non-domestic cats,” Theriogenology, vol. 66, no. 6-7, pp. 1518–1524, 2006. View at Publisher · View at Google Scholar · View at PubMed
  51. M. C. Gómez, C. E. Pope, R. Harris, A. Davis, S. Mikota, and B. L. Dresser, “Births of kittens produced by intracytoplasmic sperm injection of domestic cat oocytes matured in vitro,” Reproduction, Fertility and Development, vol. 12, no. 7-8, pp. 423–433, 2000. View at Google Scholar
  52. P. Comizzoli, D. E. Wildt, and B. S. Pukazhenthi, “Poor centrosomal function of cat testicular spermatozoa impairs embryo development in vitro after intracytoplasmic sperm injection,” Biology of Reproduction, vol. 75, no. 2, pp. 252–260, 2006. View at Publisher · View at Google Scholar · View at PubMed
  53. C. E. Pope, M. C. Gómez, and B. L. Dresser, “In vitro production and transfer of cat embryos in the 21st century,” Theriogenology, vol. 66, no. 1, pp. 59–71, 2006. View at Publisher · View at Google Scholar · View at PubMed
  54. W. F. Swanson, “Application of assisted reproduction for population management in felids: the potential and reality for conservation of small cats,” Theriogenology, vol. 66, no. 1, pp. 49–58, 2006. View at Publisher · View at Google Scholar · View at PubMed
  55. A. K. Alhaider and P. F. Watson, “The effects of hCG and growth factors on in vitro nuclear maturation of dog oocytes obtained during anoestrus,” Reproduction, Fertility and Development, vol. 21, no. 4, pp. 538–548, 2009. View at Publisher · View at Google Scholar · View at PubMed