Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011 (2011), Article ID 686570, 7 pages
http://dx.doi.org/10.4061/2011/686570
Research Article

The Number of Grafted Fragments Affects the Outcome of Testis Tissue Xenografting from Piglets into Recipient Mice

Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, Canada S7N 5B4

Received 3 May 2010; Accepted 31 May 2010

Academic Editor: Stefan Schlatt

Copyright © 2011 Sepideh Abbasi and Ali Honaramooz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. D. Russell, R. A. Ettlin, A. P. SinhaHikim, and E. D. Clegg, Histological and Histopathological Evaluation of the Testis, Cache River, Shawnee College Road, Ill, USA, 1990.
  2. K. Gassei and S. Schlatt, “Testicular morphogenesis: comparison of in vivo and in vitro models to study male gonadal development,” Annals of the New York Academy of Sciences, vol. 1120, pp. 152–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Huleihel, M. Abuelhija, and E. Lunenfeld, “In vitro culture of testicular germ cells: regulatory factors and limitations,” Growth Factors, vol. 25, no. 4, pp. 236–252, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. E. Parks, D. R. Lee, S. Huang, and M. T. Kaproth, “Prospects for spermatogenesis in vitro,” Theriogenology, vol. 59, no. 1, pp. 73–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Honaramooz, A. Snedaker, M. Boiani, H. Schöler, I. Dobrinski, and S. Schlatt, “Sperm from neonatal mammalia testes grafted in mice,” Nature, vol. 418, no. 6899, pp. 778–781, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Schlatt, S. S. Kim, and R. Gosden, “Spermatogenesis and steroidogenesis in mouse, hamster and monkey testicular tissue after cryopreservation and heterotopic grafting to castrated hosts,” Reproduction, vol. 124, no. 3, pp. 339–346, 2002. View at Google Scholar · View at Scopus
  7. A. Honaramooz, M.-W. Li, M. C. T. Penedo, S. Meyers, and I. Dobrinski, “Accelerated maturation of primate testis by xenografting into mice,” Biology of Reproduction, vol. 70, no. 5, pp. 1500–1503, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Schlatt, A. Honaramooz, J. Ehmcke et al., “Limited survival of adult human testicular tissue as ectopic xenograft,” Human Reproduction, vol. 21, no. 2, pp. 384–389, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Snedaker, A. Honaramooz, and I. Dobrinski, “A game of cat and mouse: xenografting of testis tissue from domestic kittens results in complete cat spermatogenesis in a mouse host,” Journal of Andrology, vol. 25, no. 6, pp. 926–930, 2004. View at Google Scholar · View at Scopus
  10. J. M. Oatley, D. M. de Avila, J. J. Reeves, and D. J. McLean, “Spermatogenesis and germ cell transgene expression in xenografted bovine testicular tissue,” Biology of Reproduction, vol. 71, no. 2, pp. 494–501, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Rathi, A. Honaramooz, W. Zeng, S. Schlatt, and I. Dobrinski, “Germ cell fate and seminiferous tuble development in bovine testis xenografts,” Reproduction, vol. 130, no. 6, pp. 923–929, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Rathi, A. Honaramooz, W. Zeng, R. Turner, and I. Dobrinski, “Germ cell development in equine testis tissue xenografted into mice,” Reproduction, vol. 131, no. 6, pp. 1091–1098, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Abrishami, S. Abbasi, and A. Honaramooz, “The effect of donor age on progression of spermatogenesis in canine testicular tissue after xenografting into immunodeficient mice,” Theriogenology, vol. 73, no. 4, pp. 512–522, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Honaramooz, X.-S. Cui, N.-H. Kim, and I. Dobrinski, “Porcine embryos produced after intracytoplasmic sperm injection using xenogeneic pig sperm from neonatal testis tissue grafted in mice,” Reproduction, Fertility and Development, vol. 20, no. 7, pp. 802–807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Shinohara, K. Inoue, N. Ogonuki et al., “Birth of offspring following transplantation of cyropreserved immature testicular pieces and in-vitro microinsemination,” Human Reproduction, vol. 17, no. 12, pp. 3039–3045, 2002. View at Google Scholar · View at Scopus
  16. S. Schlatt, A. Honaramooz, M. Boiani, H. R. Schöler, and I. Dobrinski, “Progeny from sperm obtained after ectopic grafting of neonatal mouse testes,” Biology of Reproduction, vol. 68, no. 6, pp. 2331–2335, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Ohta and T. Wakayama, “Generation of normal progeny by intracytoplasmic sperm injection following grafting of testicular tissue from cloned mice that died postnatally,” Biology of Reproduction, vol. 73, no. 3, pp. 390–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Jahnukainen, J. Ehmcke, and S. Schlatt, “Testicular xenografts: a novel approach to study cytotoxic damage in juvenile primate testis,” Cancer Research, vol. 66, no. 7, pp. 3813–3818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Nakai, H. Kaneko, T. Somfai et al., “Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts,” Reproduction, vol. 139, no. 2, pp. 331–335, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. M. C. J. Paris and S. Schlatt, “Ovarian and testicular tissue xenografting: its potential for germline preservation of companion animals, non-domestic and endangered species,” Reproduction, Fertility and Development, vol. 19, no. 6, pp. 771–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Arregui, R. Rathi, S. O. Megee et al., “Xenografting of sheep testis tissue and isolated cells as a model for preservation of genetic material from endangered ungulates,” Reproduction, vol. 136, no. 1, pp. 85–93, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. R. Rodriguez-Sosa and I. Dobrinski, “Recent developments in testis tissue xenografting,” Reproduction, vol. 138, no. 2, pp. 187–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Abrishami, M. Anzar, Y. Yang, and A. Honaramooz, “Cryopreservation of immature porcine testis tissue to maintain its developmental potential after xenografting into recipient mice,” Theriogenology, vol. 73, no. 1, pp. 86–96, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Yang, M. Yarahmadi, and A. Honaramooz, “Development of novel strategies for isolation of piglet testis cells with high proportion of gonocytes,” Reproduction, Fertility and Development, vol. 22, pp. 1–9, 2010. View at Google Scholar
  25. I. Dobrinski and R. Rathi, “Ectopic grafting of mammalian testis tissue into mouse hosts,” Methods in Molecular Biology, vol. 450, pp. 139–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. R. Rodriguez-Sosa, R. A. Foster, and A. Hahnel, “Development of strips of ovine testes after xenografting under the skin of mice and co-transplantation of exogenous spermatogonia with grafts,” Reproduction, vol. 139, no. 1, pp. 227–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Schmidt, J. M. de Avila, and D. J. McLean, “Effect of vascular endothelial growth factor and testis tissue culture on spermatogenesis in bovine ectopic testis tissue xenografts,” Biology of Reproduction, vol. 75, no. 2, pp. 167–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Schlatt, B. Westernströer, K. Gassei, and J. Ehmcke, “Donor-host involvement in immature rat testis xenografting into nude mouse hosts,” Biology of Reproduction, vol. 82, no. 5, pp. 888–895, 2010. View at Google Scholar