Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011, Article ID 712369, 14 pages
http://dx.doi.org/10.4061/2011/712369
Review Article

Tuberculosis in Birds: Insights into the Mycobacterium avium Infections

1Avian Diseases Section, Division of Pathology, Indian Veterinary Research Institute (IVRI), Izatnagar 243 122, India
2Avian Disease Diagnostic Laboratory, Animal Husbandry Department, Government of Kerala, Thiruvalla, Kerala 689 105, India
3Division of Bacteriology and Mycology, Indian Veterinary Research Institute (IVRI), Izatnagar 243 122, India
4Division of Animal Biotechnology, Indian Veterinary Research Institute (IVRI), Izatnagar 243 122, India
5Central Institute for Research on Goats, Makhdoom, Mathura 281 122, India
6Immunology Section, Division of Animal Biotechnology, Indian Veterinary Research Institute (IVRI), Izatnagar 243 122, India

Received 14 January 2011; Revised 25 March 2011; Accepted 5 May 2011

Academic Editor: Jesse M. Hostetter

Copyright © 2011 Kuldeep Dhama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Dvorska, L. Matlova, W. Y. Ayele et al., “Avian tuberculosis in naturally infected captive water birds of the Ardeideae and Threskiornithidae families studied by serotyping, IS901 RFLP typing, and virulence for poultry,” Veterinary Microbiology, vol. 119, no. 2–4, pp. 366–374, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Fulton and C. O. Thoen, “Tuberculosis,” in Diseases of Poultry, Y. M. Saif, H. J. Barnes, J. R. Glisson, F. M. Fadly, L. R. Mc Dougald, and D. E. Swayne, Eds., pp. 836–844, Iowa State University Press, Ames, IA, USA, 2003. View at Google Scholar
  3. “Manual of Diagnostic Tests and Vaccines for Terrestrial Animals,” Avian tuberculosis. Chapter 2.3.6. pp. 497–508, 2010, http://www.oie.int/en/international-standard-setting/terrestrial-manual/access-online.
  4. A. Aranaz, E. Liibana, A. Mateos, and L. Domínguez, “Laboratory Diagnosis of Avian Avian tuberculosis,” Seminars in Avian and Exotic Pet Medicine, vol. 6, no. 1, pp. 9–17, 1997. View at Google Scholar
  5. L. A. Tell, L. Woods, and R. L. Cromie, “Avian tuberculosis in birds,” Review Science and Technology Office Internationale des Epizooties, vol. 20, pp. 180–203, 2001. View at Google Scholar
  6. N. VanDerHeyden, “Mycobacterial infections: new strategies in the treatment of avian tuberculosis,” Seminars in Avian Exotic Pet Medicine, vol. 6, no. 1, pp. 25–33, 1997. View at Google Scholar
  7. K. Dhama, M. Mahendran, and S. Tomar, “Pathogens transmitted by migratory birds: threat perceptions to poultry health and production,” International Journal of Poultry Science, vol. 7, no. 6, pp. 516–525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Heatley, M. M. Mitchell, A. Roy, D. Y. Cho, D. L. Williams, and T. N. Tully Jr., “Disseminated avian tuberculosis in a bald eagle (Haliaeetus leucocephalus),” Journal of Avian Medicine and Surgery, vol. 21, no. 3, pp. 201–209, 2007. View at Google Scholar · View at Scopus
  9. C. O. Thoen, “Tuberculosis,” in Diseases of Poultry, B. W. Calnek, Ed., pp. 167–178, London, UK, Mosby-Wolfe, 1997. View at Google Scholar
  10. R. L. Sah, S. D. Singh, and S. C. Arya, “Tuberculosis in some captive zoo birds: case records,” Indian Journal of Veterinary Pathology, vol. 9, pp. 84–87, 1985. View at Google Scholar
  11. K. Dhama, M. Mahendran, and S. Tomar, “Avian tuberculosis: an overview,” Poultry Punch, vol. 24, no. 3, pp. 38–52, 2007. View at Google Scholar
  12. B. B. Mallick, R. L. Chakraborty, and S. K. Chattopadhyay, “Some observations on the naturally occurring cases of tuberculosis in ducks,” Indian Journal of Animal Health, vol. 9, pp. 171–173, 1970. View at Google Scholar
  13. D. N. Mohanty and G. M. Patnaik, “Pathology of tuberculosis in a silver pheasant,” Indian Journal of Animal Science, vol. 41, pp. 196–198, 1971. View at Google Scholar
  14. G. Singh, T. P. Joshi, J. M. Lall, and P. K. Iyer, “Tuberculosis in ducks,” Indian Journal of Veterinary Science, vol. 38, pp. 424–430, 1968. View at Google Scholar
  15. K. Hejlicek and F. Treml, “Comparison of pathogenesis and epizootiology signification of avian avian tuberculosis in different sorts of domestic and free living synanthropic fowl,” Veterinary Medicine Czechoslovakia, vol. 40, pp. 187–194, 1995. View at Google Scholar
  16. M. F. Thorel, H. Huchzermeyer, R. Weiss, and J. J. Fontaine, “Mycobacterium avium infections in animals,” Veterinary Research, vol. 28, no. 5, pp. 439–447, 1997. View at Google Scholar · View at Scopus
  17. M. F. Thorel, H. Huchzermeyer, and A. L. Michel, “Mycobacterium avium and M. intracellulare infection in mammals,” Review Science and Technology Office Internationale des Epizooties, vol. 20, pp. 204–218, 2001. View at Google Scholar
  18. M. Schrenzel, M. Nicolas, C. Witte et al., “Molecular epidemiology of Mycobacterium avium subsp. avium and Mycobacterium intracellulare in captive birds,” Veterinary Microbiology, vol. 126, no. 1–3, pp. 122–131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. B. Larsen and H. W. Moon, “Experimental Mycobacterium paratuberculosis infection in chickens,” American Journal of Veterinary Research, vol. 33, no. 6, pp. 1231–1235, 1972. View at Google Scholar · View at Scopus
  20. M. F. Thorel, M. Krichevsky, and V. V. Levy-Frebault, “Numerical taxonomy of mycobactin-dependent mycobacteria, emended description of Mycobacterium avium, and description of Mycobacterium avium subsp. avium subsp. nov., Mycobacterium avium subsp. paratuberculosis subsp. nov., and Mycobacterium avium subsp. silvaticum subsp. nov,” International Journal of Systematic Bacteriology, vol. 40, no. 3, pp. 254–260, 1990. View at Google Scholar · View at Scopus
  21. W. Mijs, P. De Haas, R. Rossau et al., “Molecular evidence to support a proposal to reserve the designation Mycobacterium avium subsp. avium to bird-type isolates and M. avium subsp. hominissuis for the human/porcine type of M. aviumavium,” International Journal of Systematic and Evolutionary Microbiology, vol. 52, no. 5, pp. 1505–1518, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. R. K. Hoop, “Public health implications of exotic pet avian tuberculosis,” Seminars in Avian Exotic Pet Medicine, vol. 6, no. 1, pp. 3–8, 1997. View at Google Scholar
  23. C. O. Thoen, “Tuberculosis,” in A Laboratory Manual for the Isolation and Identification of Avian Pathogens, D. E. Swayne, J. R. Gilson, M. W. Jackwood, J. E. Pearson, and W. M. Reed, Eds., pp. 69–73, American Association of Avian Pathologists, Philadelphia, Pa, USA, 1998. View at Google Scholar
  24. C. B. Inderlied, C. A. Kemper, and L. E. M. Bermudez, “The Mycobacterium avium complex,” Clinical Microbiology Review, vol. 6, no. 3, pp. 266–310, 1993. View at Google Scholar · View at Scopus
  25. V. Ritacco, K. Kremer, T. Van Der Laan, J. E. M. Pijnenburg, P. E. W. De Haas, and D. Van Soolingen, “Use of IS901 and IS1245 in RFLP typing of Mycobacterium avium complex: relatedness among serovar reference strains, human and animal isolates,” International Journal of Tuberculosis and Lung Disease, vol. 2, no. 3, pp. 242–251, 1998. View at Google Scholar · View at Scopus
  26. I. Pavlik, P. Svastova, J. Bartil, L. Dvorska, and I. Rychlik, “Relationship between IS901 in the Mycobacterium avium complex strains isolated from birds, animals, humans, and the environment and virulence for poultry,” Clinical and Diagnostic Laboratory Immunology, vol. 7, no. 2, pp. 212–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Dvorska, T. J. Bull, M. Bartos et al., “A standardised restriction fragment length polymorphism (RFLP) method for typing Mycobacterium avium isolates links IS901 with virulence for birds,” Journal of Microbiological Methods, vol. 55, no. 1, pp. 11–27, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Lairmore, T. Spraker, and R. Jones, “Two cases of tuberculosis in raptors in Colorado,” Journal of Wildlife Diseases, vol. 21, no. 1, pp. 54–57, 1985. View at Google Scholar · View at Scopus
  29. J. Millan, N. Negre, E. Castellanos et al., “Avian tuberculosis in free-living raptors in majorca Island, Spain,” Avian Pathology, vol. 39, no. 1, pp. 1–6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Pocknell, B. J. Miller, J. L. Neufeld, and B. H. Grahn, “Conjunctival mycobacteriosis in two emus (Dromaius novaehollandiae),” Veterinary Pathology, vol. 33, no. 3, pp. 346–348, 1996. View at Google Scholar · View at Scopus
  31. E. Boughton, “Tuberculosis caused by Mycobacterium avium,” Veterinary Bulletin, vol. 39, pp. 457–465, 1969. View at Google Scholar
  32. R. Chandra, V. D. P. Rao, J. C. Gomez-Villamandos, S. K. Shukla, and P. S. Banerjee, “Avian tuberculosis,” in Diseases of Poultry and their Control, pp. 93–98, IBD Book Company, Bombay, India, 2001. View at Google Scholar
  33. C. M. Kahn, “Avian tuberculosis,” in Merck Veterinary Manual, pp. 2267–2268, National Publishing, Philadelphia, Pa, USA, 2005. View at Google Scholar
  34. G. Manarolla, E. Liandris, G. Pisoni et al., “Avian tuberculosis in companion birds: 20-year survey,” Veterinary Microbiology, vol. 133, no. 4, pp. 323–327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Nobrega, P. J. Cardona, S. Roque, P. P. Oa, R. Appelberg, and M. Correia-Neves, “The thymus as a target for mycobacterial infections,” Microbes and Infection, vol. 9, no. 14-15, pp. 1521–1529, 2007. View at Publisher · View at Google Scholar
  36. F. M. Collins, “Antituberculous immunity: new solutions to an old problem,” Reviews of Infectious Diseases, vol. 13, no. 5, pp. 940–950, 1991. View at Google Scholar · View at Scopus
  37. K. Dhama, M. P. Bansal, and G. C. Ram, “In vitro evaluation of nitrite production and intracellular killing activities of bovine peripheral blood monocytes pulsed with M. bovis BCG,” Indian Veterinary Journal, vol. 75, no. 12, pp. 1075–1078, 1998. View at Google Scholar · View at Scopus
  38. K. Dhama, M. P. Bansal, and G. C. Ram, “In vitro study of the role of vitamin D3 in activating peripheral bovine blood monocytes pulsed with Mycobacterium bovis BCG,” Indian Veterinary Medical Journal, vol. 23, pp. 225–228, 1999. View at Google Scholar
  39. R. L. Cromie, N. J. Ash, M. J. Brown, and J. L. Stanford, “Avian immune responses to Mycobacterium avium: the wildfowl example,” Developmental and Comparative Immunology, vol. 24, no. 2-3, pp. 169–185, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Colavecchia, A. Jolly, A. Stempler, E. Fernandez, and S. Mundo, “Lipoarabinomannans from Mycobacterium avium subsp. avium affect bovine immune responses to different antigens,” Veterinary Immunology and Immunopathology, vol. 128, no. 1–3, p. 317, 2009. View at Google Scholar
  41. H. Saito, H. Tomioka, K. Sato, H. Tasaka, and D. J. Dawson, “Identification of various serovar strains of Mycobacterium avium complex by using DNA probes specific for Mycobacterium avium and Mycobacterium intracellulare,” Journal of Clinical Microbiology, vol. 28, no. 8, pp. 1694–1697, 1990. View at Google Scholar · View at Scopus
  42. E. J. Shitaye, V. Beran, J. Svobodová, M. Morávková, V. Babák, and I. Pavlík, “Comparison of the conventional culture, the manual fluorescent MGIT system and the automated fluorescent MGIT 960 culture system for the detection of Mycobacterium avium subsp. avium in tissues of naturally infected hen,” Folia Microbiology (Praha), vol. 54, no. 2, pp. 137–141, 2009. View at Google Scholar
  43. D. O'Grady, O. Flynn, E. Costello et al., “Restriction fragment length polymorphism analysis of Mycobacterium avium isolates from animal and human sources,” International Journal of Tuberculosis and Lung Disease, vol. 4, no. 3, pp. 278–281, 2000. View at Google Scholar · View at Scopus
  44. L. A. Tell, C. M. Leutenegger, R. S. Larsen et al., “Real-time polymerase chain reaction testing for the detection of Mycobacterium genavense and Mycobacterium avium complex species in Avian samples,” Avian Diseases, vol. 47, no. 4, pp. 1406–1415, 2003. View at Google Scholar · View at Scopus
  45. I. Slana, M. Kaevska, P. Kralik, A. Horvathova, and I. Pavlik, “Distribution of Mycobacterium avium subsp. avium and M. a. hominissuis in artificially infected pigs studied by culture and IS901 and IS1245 quantitative real time PCR,” Veterinary Microbiology, vol. 144, no. 3-4, pp. 437–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. V. C. Thibault, M. Grayon, M. L. Boschiroli et al., “New variable-number tandem-repeat markers for typing Mycobacterium avium subsp. paratuberculosis and M. avium strains: comparison with IS900 and IS1245 restriction fragment length polymorphism typing,” Journal of Clinical Microbiology, vol. 45, no. 8, pp. 2404–2410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Radomski, V. C. Thibault, C. Karoui et al., “Determination of genotypic diversity of Mycobacterium avium subspecies from human and animal origins by mycobacterial interspersed repetitive-unit-variable-number tandemrepeat and IS1311 restriction fragment length polymorphism typing methods,” Journal of Clinical Microbiology, vol. 48, no. 4, pp. 1026–1034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Rozanska, “Preparation of antigen for whole blood rapid agglutination test and its specificity for diagnosis of avian tuberculosis,” Bulletin of Veterinary Institute Pulawy, vol. 9, no. 1, pp. 20–25, 1965. View at Google Scholar
  49. E. Amador, L. Lloret, A. I. Castillo, and Y. Lopez, “Identification of immunogenic proteins of Mycobacterium avium with diagnostic potential,” International Journal of Infectious Diseases, vol. 14, no. 1, p. 129, 2010. View at Google Scholar
  50. J. T. Crawford, “Development of rapid techniques for identification of M. avium infections,” Research in Microbiology, vol. 145, no. 3, pp. 177–181, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. J. W. U. Fries, R. J. Patel, W. F. Piessens, and D. F. Wirth, “Genus- and species-specific DNA probes to identify mycobacteria using the polymerase chain reaction,” Molecular and Cellular Probes, vol. 4, no. 2, pp. 87–105, 1990. View at Google Scholar · View at Scopus
  52. H. Soini, E. Enrola, and M. K. Viljanen, “Genetic diversity among Mycobacterium avium complex AccuProbe-positive isolates,” Journal of Clinical Microbiology, vol. 34, no. 1, pp. 55–57, 1996. View at Google Scholar · View at Scopus
  53. G. H. Mazurek, S. Hartman, and Y. Zhang, “Large DNA restriction fragment polymorphism in the Mycobacterium avium M. intracellulare complex: a potential epidemiologic tool,” Journal of Clinical Microbiology, vol. 31, no. 2, pp. 390–394, 1993. View at Google Scholar · View at Scopus
  54. D. Thierry, P. Matsiota-Bernard, C. Nauciel, and J. L. Guesdon, “Comparison of polymerase chain reaction and nonradioactive hybridization techniques for the identification of Mycobacterium avium strains,” Molecular and Cellular Probes, vol. 8, no. 6, pp. 469–471, 1994. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Yamamoto, T. Shibagaki, S. Yamori et al., “Polymerase chain reaction for the differentiation of Mycobacterium intracellulare and Mycobacterium avium,” Tubercle and Lung Disease, vol. 74, no. 5, pp. 342–345, 1993. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Yamamoto, T. Shibagaki, S. Yamori et al., “Strategy for the detection and differentiation of Mycobacterium avium species in isolates and heavily infected tissues,” Research in Veterinary Science, vol. 85, no. 2, pp. 257–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Springer, L. Stockman, K. Teschner, G. D. Roberts, and E. C. Bottger, “Two-laboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods,” Journal of Clinical Microbiology, vol. 34, no. 2, pp. 296–303, 1996. View at Google Scholar · View at Scopus
  58. M. Bartos, P. Hlozek, P. Svastova et al., “Identification of members of Mycobacterium avium species by Accu-Probes, serotyping, and single IS900, IS901, IS1245 and IS901-flanking region PCR with internal standards,” Journal of Microbiological Methods, vol. 64, no. 3, pp. 333–345, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Cousins, B. Francis, and D. Dawson, “Multiplex PCR provides a low-cost alternative to DNA probe methods for rapid identification of Mycobacterium avium and Mycobacterium intracellulare,” Journal of Clinical Microbiology, vol. 34, no. 9, pp. 2331–2333, 1996. View at Google Scholar · View at Scopus
  60. S. J. S. J. Shin, B. S. Lee, W. J. Koh et al., “Efficient differentiation of Mycobacterium avium complex species and subspecies by use of five-target multiplex PCR,” Journal of Clinical Microbiology, vol. 48, no. 11, pp. 4057–4062, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Lappayawichit, S. Rienthong, D. Rienthong et al., “Differentiation of Mycobacterium species by restriction enzyme analysis of amplified 16S-23S ribosomal DNA spacer sequences,” Tubercle and Lung Disease, vol. 77, no. 3, pp. 257–263, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. D. O'Grady, O. Flynn, E. Costello et al., “Restriction fragment length polymorphism analysis of Mycobacterium avium isolates from animal and human sources,” International Journal of Tuberculosis and Lung Disease, vol. 4, no. 3, pp. 278–281, 2000. View at Google Scholar · View at Scopus
  63. J. Ikonomopoulos, E. Fragkiadaki, E. Liandris, K. Sotirakoglou, E. Xylouri, and M. Gazouli, “Estimation of the spread of pathogenic mycobacteria in organic broiler farms by the polymerase chain reaction,” Veterinary Microbiology, vol. 133, no. 3, pp. 278–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Mobius, P. Lentzsch, I. Moser, L. Naumann, G. Martin, and H. Kohler, “Comparative macrorestriction and RFLP analysis of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis isolates from man, pig, and cattle,” Veterinary Microbiology, vol. 117, no. 2–4, pp. 284–291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Van Soolingen, J. Bauer, V. Ritacco et al., “IS1245 restriction fragment length polymorphism typing of Mycobacterium avium isolates: proposal for standardization,” Journal of Clinical Microbiology, vol. 36, no. 10, pp. 3051–3054, 1998. View at Google Scholar · View at Scopus
  66. J. E. Shitaye, L. Matlova, A. Horvathova et al., “Mycobacterium avium subsp. avium distribution studied in a naturally infected hen flock and in the environment by culture, serotyping and IS901 RFLP methods,” Veterinary Microbiology, vol. 127, no. 1-2, pp. 155–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. S. Bannalikar and R. Verma, “Detection of Mycobacterium avium & M. tuberculosis from human sputum cultures by PCR-RFLP analysis of hsp65 gene & pncA PCR,” Indian Journal of Medical Research, vol. 123, no. 2, pp. 165–172, 2006. View at Google Scholar · View at Scopus
  68. A. Devallois, M. Picardeau, K. K. Goh, C. Sola, V. Vincent, and N. Rastogi, “Comparative evaluation of PCR and commercial DNA probes for detection and identification to species level of Mycobacterium avium and Mycobacterium intracellulare,” Journal of Clinical Microbiology, vol. 34, no. 11, pp. 2756–2759, 1996. View at Google Scholar · View at Scopus
  69. P. Kirschner, P. A. Meier, and E. C. Bottger, “Genotypic identification and detection of mycobacteria,” in Diagnostic Molecular Microbiology, D. H. Persing, T. F. Smith, F. C. Tenover, and T. C. White, Eds., pp. 173–190, American Society for Microbiology, Washington, DC, USA, 1993. View at Google Scholar
  70. A. Telenti, F. Marchesi, M. Balz, F. Bally, E. C. Bottger, and T. Bodmer, “Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis,” Journal of Clinical Microbiology, vol. 31, no. 2, pp. 175–178, 1993. View at Google Scholar · View at Scopus
  71. F. Trueba, M. Fabre, and P. Saint-Blancard, “Rapid identification of Mycobacterium genavense with a new commercially available molecular test, INNO-LiPA MYCOBACTERIA v2,” Journal of Clinical Microbiology, vol. 42, no. 9, pp. 4403–4404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Y. Turenne, M. Semret, D. V. Cousins, D. M. Collins, and M. A. Behr, “Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex,” Journal of Clinical Microbiology, vol. 44, no. 2, pp. 433–440, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Fatima, “Newer diagnostic techniques for tuberculosis,” Respiratory Medicine, vol. 2, no. 4, pp. 151–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. I. K. Neonakis, Z. Gitti, E. Krambovitis, and D. A. Spandidos, “Molecular diagnostic tools in mycobacteriology,” Journal of Microbiological Methods, vol. 75, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Inagaki, K. Nishimori, T. Yagi et al., “Comparison of a variable-number tandem-repeat (VNTR) method for typing Mycobacterium avium with mycobacterial interspersed repetitive-unit-VNTR and IS1245 restriction fragment length polymorphism typing,” Journal of Clinical Microbiology, vol. 47, no. 7, pp. 2156–2164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. D. E. Davis, J. L. Carpenter, S. Trevino, J. Koch, and A. J. Ognibene, “In vitro susceptibility of Mycobacterium avium complex to antibacterial agents,” Diagnostic Microbiology and Infectious Diseases, vol. 8, no. 3, pp. 149–155, 1987. View at Google Scholar · View at Scopus
  77. N. Rastogi, K. S. Goh, and S. Clavel-Seres, “Stazyme, a mycobacteriolytic preparation from a Staphylococcus strain, is able to break the permeability barrier in multiple drug resistant Mycobacterium avium,” FEMS Immunology and Medical Microbiology, vol. 19, no. 4, pp. 297–305, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Gill and M. L. Blandy, “Control of avian tuberculosis in a commercial poultry flock,” Australian Veterinary Journal, vol. 63, no. 12, pp. 422–423, 1986. View at Google Scholar · View at Scopus
  79. K. Dhama, J. M. Kataria, B. B. Dash, M. Mahendran, and S. Tomar, “Biosecurity-the first line of defense in poultry disease control,” in Proceedings of the Souvenir of National Symposium on Emerging and Exotic Diseases of Poultry, pp. 73–77, IVRI, Uttarpradesh, India, 2005.
  80. K. Dhama and M. Mahendran, “Technologies and advances in diagnosis and control of poultry diseases: safeguarding poultry health and productivity,” Poultry Technology, vol. 2, no. 12, pp. 13–16, 2008. View at Google Scholar
  81. K. Dhama, M. Mahendran, P. K. Gupta, and A. Rai, “DNA vaccines and their applications in veterinary practice: current perspectives,” Veterinary Research Communications, vol. 32, no. 5, pp. 341–356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. J. O. Falkinham III, W. B. Gross, and F. W. Pierson, “Effect of different cell fractions of Mycobacterium avium and vaccination regimens on Mycobacterium avium infection,” Scandinavian Journal of Immunology, vol. 59, no. 5, pp. 478–484, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Kríz, M. Slaný, J. E. J. E. Shitaye, and I. Pavlík, “Avian mycobacteriosis in humans remains a threat in the Czech Republic,” Klin Mikrobiol Infekc Lek, vol. 16, no. 1, pp. 10–17, 2010. View at Google Scholar
  84. G. Martin and D. Schimmel, “Mycobacterium avium infections in poultry—a risk for human health or not?” Dutch Tierarztl Wochenschr, vol. 107, pp. 53–58, 2000. View at Google Scholar
  85. Y. Une and T. Mori, “Tuberculosis as a zoonosis from a veterinary perspective,” Comparative Immunology, Microbiology and Infectious Diseases, vol. 30, no. 5-6, pp. 415–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. F. C. S. Bradbury and D. P. H. Belf, “Human plumonary tuberculosis due to an avian tubercle bacilli: report of a case,” The Lancet, vol. 247, no. 6386, pp. 89–91, 1946. View at Google Scholar · View at Scopus
  87. G. K. Crompton, M. E. Schonell, and A. Wallace, “Disseminated infection with Mycobacterium avium: part III-sensitivity to avian tuberculin among contacts,” Tubercle, vol. 49, no. 1, pp. 38–41, 1968. View at Google Scholar · View at Scopus
  88. M. P. Flynn, “Comparative testing with human tuberculin and avian tuberculin in county Westmeath,” Tubercle, vol. 43, no. 1, pp. 64–75, 1962. View at Google Scholar
  89. F. Biet, M. L. Boschiroli, M. F. Thorel, and L. A. Guilloteau, “Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC),” Veterinary Research, vol. 36, no. 3, pp. 411–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. A. M. Dhople, A. A. Dhople, and M. A. Ibanez, “In vitro activities of 2,2-bipyridyl analogues against Mycobacterium avium and M. tuberculosis,” Tubercle and Lung Disease, vol. 76, no. 2, pp. 136–140, 1995. View at Google Scholar · View at Scopus
  91. G. A. Falk, S. J. Hadley, F. E. Sharkey, M. Liss, and C. Muschenheim, “Mycobacterium avium infections in man,” The American Journal of Medicine, vol. 54, no. 6, pp. 801–810, 1973. View at Google Scholar · View at Scopus
  92. L. E. Bermudez, M. Wu, E. Miltner, and C. B. Inderlied, “Isolation of two subpopulations of Mycobacterium avium within human macrophages,” FEMS Microbiology Letters, vol. 178, no. 1, pp. 19–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. R. N. E. Eccles and R. N. J. Ptak, “Mycobacterium avium complex infection in AIDS: clinical features, treatment, and prevention,” Journal of the Association of Nurses in AIDS Care, vol. 6, no. 5, pp. 37–47, 1995. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Bodmer, E. Miltner, and L. E. Bermudez, “Mycobacterium avium resists exposure to the acidic conditions of the stomach,” FEMS Microbiology Letters, vol. 182, no. 1, pp. 45–49, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Fukuoka, Y. Nakano, A. Nakajima, S. Hontsu, and H. Kimura, “Endobronchial lesions involved in Mycobacterium avium infection,” Respiratory Medicine, vol. 97, no. 12, pp. 1261–1264, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. P. R. J. Gangadharam, V. K. Perumal, B. T. Jairam, N. R. Podapati, R. B. Taylor, and J. F. LaBrecque, “Virulence of Mycobacterium avium complex strains from acquired immune deficiency syndrome patients: relationship with characteristics of the parasite and host,” Microbial Pathogenesis, vol. 7, no. 4, pp. 263–278, 1989. View at Publisher · View at Google Scholar · View at Scopus
  97. C. O. Thoen, “Mycobacterium avium infections in animals,” Research in Microbiology, vol. 145, no. 3, pp. 173–177, 1994. View at Publisher · View at Google Scholar · View at Scopus
  98. O. F. Thoresen and F. Saxegaard, “Comparative use of DNA probes for Mycobacterium avium and Mycobacterium intracellulare and serotyping for identification and characterization of animal isolates of the M. avium complex,” Veterinary Microbiology, vol. 34, no. 1, pp. 83–88, 1993. View at Publisher · View at Google Scholar · View at Scopus
  99. A. Limia, F. J. Sangari, D. Wagner, and L. E. Bermudez, “Characterization and expression of secA in Mycobacterium avium,” FEMS Microbiology Letters, vol. 197, no. 2, pp. 151–157, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. I. W. Lesslie and K. J. Birn, “Mycobacterium avium infections in cattle and pigs in Great Britain,” Tubercle, vol. 51, no. 4, pp. 446–451, 1970. View at Google Scholar · View at Scopus
  101. J. Van Ingen, H. J. Wisselink, C. B. van Solt-Smits, M. J. Boeree, and D. van Soolingen, “Isolation of mycobacteria other than Mycobacterium avium from porcine lymph nodes,” Veterinary Microbiology, vol. 144, no. 1-2, pp. 250–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Tirkkonen, J. Pakarinen, A. M. Moisander, J. Makinen, H. Soini, and T. Ali-Vehmas, “High genetic relatedness among Mycobacterium avium strains isolated from pigs and humans revealed by comparative IS1245 RFLP analysis,” Veterinary Microbiology, vol. 125, no. 1-2, pp. 175–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  103. A. E. Suzuki and J. M. Inamine, “Genetic aspects of drug resistance in Mycobacterium avium,” Research in Microbiology, vol. 145, no. 3, pp. 210–213, 1994. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Tsukamura, “In vitro bacteriostatic and bactericidal activity of isoniazid on the Mycobacterium avium-Mycobacterium intracellulare complex,” Tubercle, vol. 71, no. 3, pp. 199–204, 1990. View at Publisher · View at Google Scholar · View at Scopus
  105. S. D. Shafran, “Prevention and treatment of disseminated Mycobacterium avium complex infection in human immunodeficiency virus-infected individuals,” International Journal of Infectious Diseases, vol. 3, no. 1, pp. 39–47, 1998. View at Google Scholar · View at Scopus
  106. W. V. Raszka Jr., L. P. Skillman, and P. L. McEvoy, “In vitro susceptibility of clinical isolates of Mycobacterium avium and M. intracellulare to folate antagonists,” Diagnostic Microbiology and Infectious Disease, vol. 18, no. 3, pp. 201–204, 1994. View at Publisher · View at Google Scholar · View at Scopus
  107. M. W. Dunne, G. Foulds, and J. A. Retsema, “Rationale for the use of azithromycin as Mycobacterium avium chemoprophylaxis,” American Journal of Medicine, vol. 102, no. 5, pp. 37–49, 1997. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Horgen, E. Legrand, and N. Rastogi, “Postantibiotic effects of rifampin, amikacin, clarithromycin and ethambutol used alone or in various two-, three- and four-drug combinations against Mycobacterium avium,” FEMS Immunology and Medical Microbiology, vol. 23, no. 1, pp. 37–44, 1999. View at Google Scholar · View at Scopus
  109. H. Saito, H. Tomioka, K. Sato, S. Kawshara, T. Hidaka, and S. Dekio, “Therapeutic effect of KRM-1648 with various antimicrobials against Mycobacterium avium complex infection in mice,” Tubercle and Lung Disease, vol. 76, no. 1, pp. 51–58, 1995. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. E. Lin, R. D. Vidic, J. E. Stout, C. A. McCartney, and V. L. Yu, “Inactivation of Mycobacterium avium by copper and silver ions,” Water Research, vol. 32, no. 7, pp. 1997–2000, 1998. View at Publisher · View at Google Scholar · View at Scopus
  111. S. David, V. Barros, K. P. Guerra, and R. Delgado, “Exploring Mycobacterium avium inhibition by macrocyclic compounds,” Research in Microbiology, vol. 156, no. 9, pp. 904–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. L. E. Bermudez and L. S. Young, “Killing of Mycobacterium avium: insights provided by the use of recombinant cytokines,” Research in Microbiology, vol. 141, no. 2, pp. 241–243, 1990. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Chinen, I. M. Cipriano, R. S. de Oliveira, S. C. Leao, M. Mariano, and C. W. Carneiro, “Recombinant interleukin-4-treated macrophages, epithelioid cell surrogates, harbor and arrest Mycobacterium avium multiplication in vitro,” Microbes and Infection, vol. 8, no. 4, pp. 965–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Dhama, M. Mahendran, R. S. Chauhan, and S. Tomar, “Cytokines: their functional roles and prospective in veterinary practice-A review,” Journal of Immunology and Immunopathology, vol. 10, no. 2, pp. 79–89, 2008. View at Google Scholar
  115. T. I. Silvaa, A. Copea, J. Goepelb, and J. M. Greiga, “The use of adjuvant granulocyte-macrophage colony-stimulating factor in HIV-related disseminated atypical mycobacterial infection,” Journal of Infection, vol. 54, no. 4, pp. 207–210, 2007. View at Google Scholar
  116. I. I. Salem, D. L. Flasher, and N. Duzgunes, “Liposome-encapsulated antibiotics,” Methods in Enzymology, vol. 391, pp. 261–291, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. S. S. Fernandes, A. A. Nunes, A. R. Gomes et al., “Identification of a new hexadentate iron chelator capable of restricting the intramacrophagic growth of Mycobacterium avium,” Microbes and Infection, vol. 12, no. 4, pp. 287–294, 2010. View at Publisher · View at Google Scholar · View at Scopus