Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2011 (2011), Article ID 953985, 8 pages
http://dx.doi.org/10.4061/2011/953985
Research Article

Bovine Tuberculosis in a Nebraska Herd of Farmed Elk and Fallow Deer: A Failure of the Tuberculin Skin Test and Opportunities for Serodiagnosis

1National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture (USDA), Ames, IA 50010, USA
2National Veterinary Services Laboratories (NVSL), Animal and Plant Health Inspection Service (APHIS), USDA, Lincoln, NE 68516, USA
3NVSL, APHIS, USDA, Fort Collins, CO 80526-8117, USA
4NVSL, APHIS, USDA, Ames, IA 50010, USA
5North American Deer Farmers Association, Lake City, MN 55041, USA
6Chembio Diagnostic Systems, Inc., Medford, NY 11763, USA

Received 10 January 2011; Accepted 20 February 2011

Academic Editor: Michael D. Welsh

Copyright © 2011 W. Ray Waters et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. T. Griffin and C. G. Mackintosh, “Tuberculosis in deer: perceptions, problems and progress,” Veterinary Journal, vol. 160, no. 3, pp. 202–219, 2000. View at Publisher · View at Google Scholar
  2. G. W. De Lisle, C. G. Mackintosh, and R. G. Bengis, “Mycobacterium bovis in free-living and captive wildlife, including farmed deer,” OIE Revue Scientifique et Technique, vol. 20, no. 1, pp. 86–111, 2001. View at Google Scholar
  3. M. A. Essey and M. A. Koller, “Status of bovine tuberculosis in North America,” Veterinary Microbiology, vol. 40, no. 1-2, pp. 15–22, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. O'Brien, S. M. Schmitt, S. D. Fitzgerald, D. E. Berry, and G. J. Hickling, “Managing the wildlife reservoir of Mycobacterium bovis: the Michigan, USA, experience,” Veterinary Microbiology, vol. 112, no. 2-4, pp. 313–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. T. L. Whiting and S. V. Tessaro, “An abattoir study of tuberculosis in a herd of farmed elk,” Canadian Veterinary Journal, vol. 35, no. 8, pp. 497–501, 1994. View at Google Scholar · View at Scopus
  6. A. Fanning and S. Edwards, “Mycobacterium bovis infection in human beings in contact with elk (Cervus elaphus) in Alberta, Canada,” Lancet, vol. 338, no. 8777, pp. 1253–1255, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. T. J. Bucholz, Bovine TB Strain Confirmed In Michigan Hunter: Hunters Reminded To Wear Gloves When Cleaning Game, Michigan Department of Community Health, http://www.michigan.gov/mdch/0,1607,7-132-8347-107460–M,00.html.
  8. M. J. Wilkins, J. Meyerson, P. C. Bartlett et al., “Human Mycobacterium bovis infection and bovine tuberculosis outbreak, Michigan, 1994–2007,” Emerging Infectious Diseases, vol. 14, no. 4, pp. 657–660, 2008. View at Google Scholar · View at Scopus
  9. C. E. Massengill, “Report of the committee on tuberculosis,” in Proceedings of the 109th United States Animal Health Association Annual Meeting, vol. 109, pp. 679–718, Hershey, Pa, USA, 2005.
  10. C. E. Massengill, “Report of the committee on tuberculosis,” in Proceedings of the 108th United States Animal Health Association Annual Meeting, vol. 108, pp. 581–616, Greensboro, NC, USA, 2004.
  11. W. C. Hench, “Current status of the US bovine tuberculosis eradication program fiscal year,” in Proceedings of the 111th United States Animal Health Association Annual Meeting, vol. 111, pp. 747–752, Reno, Nev, USA, 2007.
  12. K. M. Connell, “Bovine tuberculosis surveillance in U.S. livestock fiscal year 2009,” in Proceedings of the 113th United States Animal Health Association Annual Meeting, vol. 113, pp. 650–653, San Diego, Calif, USA, 2009.
  13. B. M. Buddle, T. Wilson, M. Denis et al., “Sensitivity, specificity, and confounding factors of novel serological tests used for the rapid diagnosis of bovine tuberculosis in farmed red deer (Cervus elaphus),” Clinical and Vaccine Immunology, vol. 17, no. 4, pp. 626–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N. P. Harrington, O. P. Surujballi, J. F. Prescott et al., “Antibody responses of cervids (Cervus elaphus) following experimental Mycobacterium bovis infection and the implications for immunodiagnosis,” Clinical and Vaccine Immunology, vol. 15, no. 11, pp. 1650–1658, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Jaroso, J. Vicente, M. P. Martín-Hernando et al., “Ante-mortem testing wild fallow deer for bovine tuberculosis,” Veterinary Microbiology, vol. 146, no. 3-4, pp. 285–289, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. K. P. Lyashchenko, R. Greenwald, J. Esfandiari et al., “Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife,” Veterinary Microbiology, vol. 132, no. 3-4, pp. 283–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. W. R. Waters, M. V. Palmer, J. P. Bannantine et al., “Antigen recognition by serum antibodies in white-tailed deer (Odocoileus virginianus) experimentally infected with Mycobacterium bovis,” Clinical and Diagnostic Laboratory Immunology, vol. 11, no. 5, pp. 849–855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. R. Waters, M. V. Palmer, J. P. Bannantine et al., “Antibody responses in reindeer (Rangifer tarandus) infected with Mycobacterium bovis,” Clinical and Diagnostic Laboratory Immunology, vol. 12, no. 6, pp. 727–735, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. United States Department of Agriculture: Animal and Plant Health Inspection Service, Veterinary Services. Bovine tuberculosis eradication uniform methods and rules. U.S. Government Printing Office, Washington, DC, USA, pp.19–34, 1999.
  20. N. Hines, J. B. Payeur, and L. J. Hoffman, “Comparison of the recovery of Mycobacterium bovis isolates using the BACTEC MGIT 960 system, BACTEC 460 system, and Middlebrook 7H10 and 7H11 solid media,” Journal of Veterinary Diagnostic Investigation, vol. 18, no. 3, pp. 243–250, 2006. View at Google Scholar · View at Scopus
  21. P. Kierschner and E. C. Bottger, “Species identification of Mycobacteria using rDNA sequencing,” in Methods in Molecular Biology, Mycobacteria Protocols, T. Parish and N. G. Stoker, Eds., vol. 101, Humana Press Inc., Totowa, NJ, USA, 1998. View at Google Scholar
  22. D. Harmsen, S. Dostal, A. Roth et al., “RIDOM: comprehensive and public sequence database for identification of Mycobacterium species,” BMC Infectious Diseases, vol. 3, article 26, 2003. View at Publisher · View at Google Scholar
  23. A. Penrod, “Modified Ziehl-Neelsen staining procedure,” in Standard Operating Procedure SOP-PL-38.05, National Veterinary Services Laboratories Ames (IA), 2010. View at Google Scholar
  24. M. V. Palmer, W. R. Waters, T. C. Thacker, W. C. Stoffregen, and B. V. Thomsen, “Experimentally induced infection of reindeer (Rangifer tarandus) with Mycobacterium bovis,” Journal of Veterinary Diagnostic Investigation, vol. 18, no. 1, pp. 52–60, 2006. View at Google Scholar · View at Scopus
  25. K. P. Lyashchenko, M. Singh, R. Colangeli, and M. L. Gennaro, “A multi-antigen print immunoassay for the development of serological diagnosis of infectious diseases,” Journal of Immunological Methods, vol. 242, no. 1-2, pp. 91–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Greenwald, O. Lyashchenko, J. Esfandiari et al., “Highly accurate antibody assays for early and rapid detection of tuberculosis in african and asian elephants,” Clinical and Vaccine Immunology, vol. 16, no. 5, pp. 605–612, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. E. B. Rohonczy, A. V. Balachandran, T. W. Dukes et al., “A comparison of gross pathology, histopathology, and mycobacterial culture for the diagnosis of tuberculosis in elk (Cervus elaphus),” Canadian Journal of Veterinary Research, vol. 60, no. 2, pp. 108–114, 1996. View at Google Scholar · View at Scopus
  28. J. C. Rhyan and D. A. Saari, “A comparative study of the histopathologic features of bovine tuberculosis in cattle, fallow deer (Dama dama), sika deer (Cervus nippon), and red deer and elk (Cervus elaphus),” Veterinary Pathology, vol. 32, no. 3, pp. 215–220, 1995. View at Google Scholar
  29. J. C. Rhyan, D. A. Saari, E. S. Williams, M. W. Miller, A. J. Davis, and A. J. Wilson, “Gross and microscopic lesions of naturally occurring tuberculosis in a captive herd of wapiti (Cervus elaphus nelsoni) in Colorado,” Journal of Veterinary Diagnostic Investigation, vol. 4, no. 4, pp. 428–433, 1992. View at Google Scholar
  30. M. V. Palmer, W. R. Waters, and D. L. Whipple, “Lesion development in white-tailed deer (Odocoileus virginianus) experimentally infected with Mycobacterium bovis,” Veterinary Pathology, vol. 39, no. 3, pp. 334–340, 2002. View at Google Scholar · View at Scopus