Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2012, Article ID 350374, 5 pages
http://dx.doi.org/10.1155/2012/350374
Research Article

Using a Herd Profile to Determine Age-Specific Prevalence of Bovine Leukemia Virus in Michigan Dairy Herds

1Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
2Antel BioSystems, Division of NorthStar Cooperative, Inc., Lansing, MI 48909, USA

Received 4 November 2011; Accepted 31 January 2012

Academic Editor: Hans J. Nauwynck

Copyright © 2012 Ronald J. Erskine et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Schwartz and D. Lévy, “Pathobiology of bovine leukemia virus,” Veterinary Research, vol. 25, no. 6, pp. 521–536, 1994. View at Google Scholar · View at Scopus
  2. J. M. Sargeant, D. F. Kelton, S. W. Martin, and E. D. Mann, “Associations between farm management practices, productivity, and bovine leukemia virus infection in Ontario dairy herds,” Preventive Veterinary Medicine, vol. 31, no. 3-4, pp. 211–221, 1997. View at Google Scholar · View at Scopus
  3. K. G. Trono, D. M. Pérez-Filgueira, S. Duffy, M. V. Borca, and C. Carrillo, “Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods,” Veterinary Microbiology, vol. 83, no. 3, pp. 235–248, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. VanLeeuwen, L. Forsythe, A. Tiwari, and R. Chartier, “Seroprevalence of antibodies against bovine leukemia virus, bovine viral diarrhea virus, Mycobacterium avium subspecies paratuberculosis, and Neospora caninum in dairy cattle in Saskatchewan,” Canadian Veterinary Journal, vol. 46, no. 1, pp. 56–58, 2005. View at Google Scholar · View at Scopus
  5. S. L. Ott, R. Johnson, and S. J. Wells, “Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms,” Preventive Veterinary Medicine, vol. 61, no. 4, pp. 249–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. O. R. Kaaden, R. Neth, and B. Frenzel, “Sequential studies of bovine leukemia virus antibody development in dairy cattle over a four-year period,” Annales de Recherches Veterinaires, vol. 9, no. 4, pp. 771–776, 1978. View at Google Scholar · View at Scopus
  7. G. A. A. Ferdinand, A. Langston, R. Ruppanner et al., “Antibodies to bovine leukemia virus in a leukosis dairy herd and suggestions for control of the infection,” Canadian Journal of Comparative Medicine, vol. 43, no. 2, pp. 173–179, 1979. View at Google Scholar
  8. S. E. Gutiérrez, G. L. Dolcini, G. H. Arroyo, C. R. Dubra, J. F. Ferrer, and E. N. Esteban, “Development and evaluation of a highly sensitive and specific blocking enzyme-linked immunosorbent assay and polymerase chain reaction assay for diagnosis of bovine leukemia virus infection in cattle,” American Journal of Veterinary Research, vol. 62, no. 10, pp. 1571–1577, 2001. View at Google Scholar · View at Scopus
  9. M. J. Burridge, M. C. Thurmond, and J. M. Miller, “Fall in antibody titer to bovine leukemia virus in the periparturient period,” Canadian Journal of Comparative Medicine, vol. 46, no. 3, pp. 270–271, 1982. View at Google Scholar · View at Scopus
  10. J. A. Angelos and M. C. Thurmond, “Bovine Lymphoma,” in Large Animal Internal Medicine, B. P. Smith, Ed., Mosby Elsevier, St. Louis, Mo, USA, 4th edition, 2009. View at Google Scholar
  11. G. Gutiérrez, I. Alvarez, R. Politzki et al., “Natural progression of Bovine Leukemia Virus infection in Argentinean dairy cattle,” Veterinary Microbiology, vol. 151, no. 3-4, pp. 255–263, 2011. View at Publisher · View at Google Scholar
  12. J. F. Evermann, R. F. DiGiacomo, J. F. Ferrer, and S. M. Parish, “Transmission of bovine leukosis virus by blood inoculation,” American Journal of Veterinary Research, vol. 47, no. 9, pp. 1885–1887, 1986. View at Google Scholar · View at Scopus
  13. E. J. Kelly, M. K. Jackson, G. Marsolais, J. D. Morrey, and R. J. Callan, “Early detection of bovine leukemia virus in cattle by use of the polymerase chain reaction,” American Journal of Veterinary Research, vol. 54, no. 2, pp. 205–209, 1993. View at Google Scholar · View at Scopus
  14. D. W. Nagy, J. W. Tyler, and S. B. Kleiboeker, “Timing of seroconversion and acquisition of positive polymerase chain reaction assay results in calves experimentally infected with bovine leukemia virus,” American Journal of Veterinary Research, vol. 68, no. 1, pp. 72–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Fechner, P. Blankenstein, A. C. Looman et al., “Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle,” Virology, vol. 237, no. 2, pp. 261–269, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Monti, R. Schrijver, and D. Beier, “Genetic diversity and spread of Bovine leukaemia virus isolates in Argentine dairy cattle,” Archives of Virology, vol. 150, no. 3, pp. 443–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Rodriguez, M. D. Golemba, R. H. Campos, K. Trono, and L. R. Jones, “Bovine leukemia virus can be classified into seven genotypes: evidence for the existence of two novel clades,” Journal of General Virology, vol. 90, no. 11, pp. 2788–2797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Jimba, S. N. Takeshima, K. Matoba, D. Endoh, and Y. Aida, “BLV-CoCoMo-qPCR: quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm,” Retrovirology, vol. 7, article 91, 2010. View at Publisher · View at Google Scholar · View at Scopus