Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2012, Article ID 708216, 17 pages
http://dx.doi.org/10.1155/2012/708216
Review Article

Avian Paramyxovirus Serotype-1: A Review of Disease Distribution, Clinical Symptoms, and Laboratory Diagnostics

1National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA 50010, USA
2College of Veterinary Medicine, Iowa State University, VMRI Building 3, Ames, IA 50011, USA

Received 17 November 2011; Revised 3 January 2012; Accepted 4 January 2012

Academic Editor: Suresh Tikoo

Copyright © 2012 Nichole L. Hines and Cathy L. Miller. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Alexander, J. G. Bell, and R. G. Alders, A Technology Review: Newcastle Disease—with Special Emphasis on Its Effects on Village Chickens, chapter 1–3, Food and Agriculture Organization of the United Nations, Rome, Italy, 2004.
  2. Y. M. Saif, A. M. Fadly, J. R. Glisson, and L. R. McDougald, “Newcastle disease, other avian paramyxoviruses, and pneumovirus infections,” in Diseases of Poultry, pp. 75–93, Blackwell Publishing Professional, Ames, Iowa, USA, 12th edition, 2008. View at Google Scholar
  3. B. S. Seal, D. J. King, and H. S. Sellers, “The avian response to Newcastle disease virus,” Developmental and Comparative Immunology, vol. 24, no. 2-3, pp. 257–268, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. L. M. Kim, D. L. Suarez, and C. L. Afonso, “Detection of a broad range of class i and II Newcastle disease viruses using a multiplex real-time reverse transcription polymerase chain reaction assay,” Journal of Veterinary Diagnostic Investigation, vol. 20, no. 4, pp. 414–425, 2008. View at Google Scholar · View at Scopus
  5. Y. J. Lee, H. W. Sung, J. G. Choi et al., “Protection of chickens from Newcastle disease with a recombinant baculovirus subunit vaccine expressing the fusion and hemagglutinin- neuraminidase proteins,” Journal of Veterinary Science, vol. 9, no. 3, pp. 301–308, 2008. View at Google Scholar · View at Scopus
  6. P. J. Miller, E. L. Decanini, and C. L. Afonso, “Newcastle disease: evolution of genotypes and the related diagnostic challenges,” Infection, Genetics and Evolution, vol. 10, no. 1, pp. 26–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. L. M. Kim, C. L. Afonso, and D. L. Suarez, “Effect of probe-site mismatches on detection of virulent Newcastle disease viruses using a fusion-gene real-time reverse transcription polymerase chain reaction test,” Journal of Veterinary Diagnostic Investigation, vol. 18, no. 6, pp. 519–528, 2006. View at Google Scholar · View at Scopus
  8. L. M. Kim, D. J. King, D. L. Suarez, C. W. Wong, and C. L. Afonso, “Characterization of class I newcastle disease virus isolates from Hong Kong live bird markets and detection using real-time reverse transcription-PCR,” Journal of Clinical Microbiology, vol. 45, no. 4, pp. 1310–1314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Pedersen, Real-Time RT-PCR for Detection of Virulent Newcastle Disease Virus in Clinical Samples, SOP-AV-1505, National Veterinary Services Laboratories testing protocol, Ames, Iowa, USA, 2010.
  10. M. G. Wise, D. L. Suarez, B. S. Seal et al., “Development of a real-time reverse-transcription PCR for detection of Newcastle disease virus RNA in clinical samples,” Journal of Clinical Microbiology, vol. 42, no. 1, pp. 329–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Rue, L. Susta, C. C. Brown et al., “Evolutionary changes affecting rapid identification of 2008 Newcastle disease viruses isolated from double-crested cormorants,” Journal of Clinical Microbiology, vol. 48, no. 7, pp. 2440–2448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. D. J. Alexander and D. A. Senne, “Newcastle disease virus and other avian paramyxoviruses,” in A Laboratory Manual for the Isolation, Identification and Characterization of Avian Pathogens, Dufour-Zavala, D. E. Swayne, J. R. Glisson et al., Eds., pp. 135–141, American Association of Avian Pathologists, Jacksonville, Fla, USA, 5th edition, 2008. View at Google Scholar
  13. T. Farkas, E. Szekely, S. Belak, and I. Kiss, “Real-time PCR-based pathotyping of newcastle disease virus by use of TaqMan minor groove binder probes,” Journal of Clinical Microbiology, vol. 47, no. 7, pp. 2114–2123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. B. S. Seal, M. G. Wise, J. C. Pedersen et al., “Genomic sequences of low-virulence avian paramyxovirus-1 (Newcastle disease virus) isolates obtained from live-bird markets in North America not related to commonly utilized commercial vaccine strains,” Veterinary Microbiology, vol. 106, no. 1-2, pp. 7–16, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Knipe and P. M. Hetsley, “Paramyxoviridae: the viruses and their replication,” in Fields Virology, pp. 1305-1306–1324, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2001. View at Google Scholar
  16. D. M. Knipe and P. M. Hetsley, “Parainfluenza viruses,” in Fields Virology, pp. 1342–1355, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2001. View at Google Scholar
  17. M. S. Galinski and S. L. Wechsler, “The molecular biology of the paramyxovirus genus,” in The Paramyxoviruses, D. W. Kingsbury, Ed., pp. 41–72, Plenum Press, New York, NY, USA, 1991. View at Google Scholar
  18. E. M. Morgan, “Evolutionary relationships of paramyxovirus nucleocapsid-associated proteins,” in The Paramyxoviruses, D. W. Kingsbury, Ed., pp. 163–176, Plenum Press, New York, NY, USA, 1991. View at Google Scholar
  19. B. S. Seal, “Nucleotide and predicted amino acid sequence analysis of the fusion protein and hemagglutinin-neuraminidase protein genes among Newcastle disease virus isolates. Phylogenetic relationships among the Paramyxovirinae based on attachment glycoprotein sequences,” Functional and Integrative Genomics, vol. 4, no. 4, pp. 246–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Liu, Y. Zhao, D. Zheng et al., “Multiplex RT-PCR for rapid detection and differentiation of class I and class II Newcastle disease viruses,” Journal of Virological Methods, vol. 171, no. 1, pp. 149–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. E. W. Aldous, J. K. Mynn, J. Banks, and D. J. Alexander, “A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene,” Avian Pathology, vol. 32, no. 3, pp. 239–256, 2003. View at Google Scholar · View at Scopus
  22. X. Liu, X. Wang, S. Wu et al., “Surveillance for avirulent Newcastle disease viruses in domestic ducks (Anas platyrhynchos and Cairina moschata) at live bird markets in Eastern China and characterization of the viruses isolated,” Avian Pathology, vol. 38, no. 5, pp. 377–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Perozo, R. Merino, C. L. Afonso, P. Villegas, and N. Calderon, “Biological and phylogenetic characterization of virulent Newcastle disease virus circulating in Mexico,” Avian Diseases, vol. 52, no. 3, pp. 472–479, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Li, Y. Qiu, A. Yu et al., “Degenerate primers based RT-PCR for rapid detection and differentiation of airborne chicken Newcastle disease virus in chicken houses,” Journal of Virological Methods, vol. 158, no. 1-2, pp. 1–5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. P. Hanson, “World wide spread of viscerotropic Newcastle disease,” in Proceedings of the 76th Meeting of the U.S. Animal Health Association, pp. 275–279, Miami Beach, Fla, USA, 1972.
  26. G. D. Kommers, D. J. King, B. S. Seal, and C. C. Brown, “Virulence of pigeon-origin Newcastle disease virus isolates for domestic chickens,” Avian Diseases, vol. 45, no. 4, pp. 906–921, 2001. View at Google Scholar · View at Scopus
  27. N. Wakamatsu, D. J. King, D. R. Kapczynski, B. S. Seal, and C. C. Brown, “Experimental pathogenesis for chickens, turkeys, and pigeons of exotic Newcastle disease virus from an outbreak in California during 2002-2003,” Veterinary Pathology, vol. 43, no. 6, pp. 925–933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Berinstein, B. S. Seal, F. Zanetti, A. Kaloghlian, G. Segade, and E. Carrillo, “Newcastle disease virus surveillance in Argentina: use of reverse transcription-polymerase chain reaction and sequencing for molecular typification,” Avian Diseases, vol. 43, no. 4, pp. 792–797, 1999. View at Google Scholar · View at Scopus
  29. C. M. Fuller, M. S. Collins, and D. J. Alexander, “Development of a real-time reverse-transcription PCR for the detection and simultaneous pathotyping of Newcastle disease virus isolates using a novel probe,” Archives of Virology, vol. 154, no. 6, pp. 929–937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. “Newcastle disease,” in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), chapter 2.3.14, pp. 576–589, World Organization for Animal Health (Office International des Epizooties, OIE), 6th edition, 2008.
  31. J. W. Walker, B. R. Heron, and M. A. Mixson, “Exotic Newcastle disease eradication program in the United States,” Avian Diseases, vol. 17, no. 3, pp. 486–503, 1973. View at Google Scholar · View at Scopus
  32. K. A. Liljebjelke, D. J. King, and D. R. Kapczynski, “Determination of minimum hemagglutinin units in an inactivated Newcastle disease virus vaccine for clinical protection of chickens from exotic Newcastle disease virus challenge,” Avian Diseases, vol. 52, no. 2, pp. 260–268, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Sleeman, “Virulent Newcastle disease virus found in double-crested cormorants,” in Wildlife Health Bulletin, USGS National Wildlife Health Center, Madison, Wis, USA, 2010. View at Google Scholar
  34. “Exotic Newcastle disease (END) and chlamydiosis,” Part 82 in Title 9: “Animal and animal products,” in APHIS Code of Federal Regulations, vol. 1, chapter 1, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Washington, DC, USA, 2010.
  35. “Possession, use, and transfer of select agents and toxins,” Part 121 in Title 9: “Animal and animal products,” in APHIS Code of Federal Regulations, vol. 1, chapter 1, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Washington, DC, USA, 2010.
  36. H. Bian, P. Fournier, R. Moormann, B. Peeters, and V. Schirrmacher, “Selective gene transfer in vitro to tumor cells via recombinant Newcastle disease virus,” Cancer Gene Therapy, vol. 12, no. 3, pp. 295–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Zhao and B. P. H. Peeters, “Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication,” Journal of General Virology, vol. 84, no. 4, pp. 781–788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. J. Flint, L. W. Enquist, V. R. Racaniello, and A. M. Skalka, “Attachment and entry,” in Principles of Virology, Molecular Biology, Pathogenesis, and Control of Animal Viruses, p. 158, ASM Press, Washington, DC, USA, 2nd edition, 2007. View at Google Scholar
  39. S. J. Flint, L. W. Enquist, V. R. Racaniello, and A. M. Skalka, “Prevention and control of viral diseases,” in Principles of Virology, Molecular Biology, Pathogenesis, and Control of Animal Viruses, p. 717, ASM Press, Washington, DC, USA, 2nd edition, 2007. View at Google Scholar
  40. O. S. de Leeuw, L. Hartog, G. Koch, and B. P. H. Peeters, “Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain,” Journal of General Virology, vol. 84, no. 2, pp. 475–484, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Zanetti, A. Berinstein, and E. Carrillo, “Effect of host selective pressure on Newcastle disease virus virulence,” Microbial Pathogenesis, vol. 44, no. 2, pp. 135–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. A. Lamb, R. G. Paterson, and T. S. Jardetzky, “Paramyxovirus membrane fusion: lessons from the F and HN atomic structures,” Virology, vol. 344, no. 1, pp. 30–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Tong and R. W. Compans, “Alternative mechanisms of interaction between homotypic and heterotypic parainfluenza virus HN and F proteins,” Journal of General Virology, vol. 80, no. 1, pp. 107–115, 1999. View at Google Scholar · View at Scopus
  44. M. L. Z. Bissonnette, J. E. Donald, W. F. DeGrado, T. S. Jardetzky, and R. A. Lamb, “Functional analysis of the transmembrane domain in paramyxovirus F protein-mediated membrane fusion,” Journal of Molecular Biology, vol. 386, no. 1, pp. 14–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Z. Huang, A. Panda, S. Elankumaran, D. Govindarajan, D. D. Rockemann, and S. K. Samal, “The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence,” Journal of Virology, vol. 78, no. 8, pp. 4176–4184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. O. S. de Leeuw, G. Koch, L. Hartog, N. Ravenshorst, and B. P. H. Peeters, “Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein,” Journal of General Virology, vol. 86, no. 6, pp. 1759–1769, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. A. Lamb and T. S. Jardetzky, “Structural basis of viral invasion: lessons from paramyxovirus F,” Current Opinion in Structural Biology, vol. 17, no. 4, pp. 427–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. T. G. Morrison, “Structure and function of a paramyxovirus fusion protein,” Biochimica et Biophysica Acta, vol. 1614, no. 1, pp. 73–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Deng, Z. Wang, P. J. Mahon, M. Marinello, A. Mirza, and R. M. Iorio, “Mutations in the newcastle disease virus hemagglutinin-neuraminidase protein that interfere with its ability to interact with the homologous F protein in the promotion of fusion,” Virology, vol. 253, no. 1, pp. 43–54, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Stone-Hulslander and T. G. Morrison, “Detection of an interaction between the HN and F proteins in newcastle disease virus-infected cells,” Journal of Virology, vol. 71, no. 9, pp. 6287–6295, 1997. View at Google Scholar · View at Scopus
  51. L. Collier, A. Balows, and M. Sussman, “Virology,” in Topley and Wilson’s Microbiology and Microbial Infections, vol. 1, pp. 435–453, Oxford University Press, New York, NY, USA, 9th edition, 1998. View at Google Scholar
  52. M. L. Killian, “National veterinary services laboratories avian influenza and newcastle disease diagnostics report,” in Proceedings of the 113th Annual Meeting of the United States Animal Health Association, pp. 590–593, 2009.
  53. J. M. DiNapoli, J. M. Ward, L. Cheng et al., “Delivery to the lower respiratory tract is required for effective immunization with Newcastle disease virus-vectored vaccines intended for humans,” Vaccine, vol. 27, no. 10, pp. 1530–1539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Bukreyev, Z. Huang, L. Yang et al., “Recombinant Newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates,” Journal of Virology, vol. 79, no. 21, pp. 13275–13284, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. W. Tan, A. Ideris, A. R. Omar, K. Yusoff, and M. Hair-Bejo, “Detection and differentiation of velogenic and lentogenic Newcastle disease viruses using SYBR Green I real-time PCR with nucleocapsid gene-specific primers,” Journal of Virological Methods, vol. 160, no. 1-2, pp. 149–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Sakaguchi, H. Nakamura, K. Sonoda et al., “Protection of chickens with or without maternal antibodies against both Marek's and Newcastle diseases by one-time vaccination with recombinant vaccine of Marek's disease virus type 1,” Vaccine, vol. 16, no. 5, pp. 472–479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Mori, H. Tawara, H. Nakazawa et al., “Expression of the Newcastle disease virus (NDV) fusion glycoprotein and vaccination against NDV challenge with a recombinant baculovirus,” Avian Diseases, vol. 38, no. 4, pp. 772–777, 1994. View at Google Scholar · View at Scopus
  58. “Avian influenza,” in Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), chapter 2.3.4, pp. 468–469, World Organization for Animal Health (Office International des Epizooties, OIE), 6th edition, 2008.
  59. N. L. Hines, Hemagglutination-Inhibition Test to Detect Serum Antibodies to Avian Paramyxoviruses, SOP-AV-0800, National Veterinary Services Laboratories Testing Protocol, Ames, Iowa, USA, 2011.
  60. J. C. Pedersen, Isolation of Avian Influenza and Avian Paramyxoviruses Viruses in Chicken Embryos from Avian Species, SOP-AV-1520, National Veterinary Services Laboratories Testing Protocol, Ames, Iowa, USA, 2011.
  61. J. C. Pedersen, Hemagglutination and Hemagglutination-Inhibition Tests for Avian Paramyxovirus-APMV-Identification, SOP-AV-0807, National Veterinary Services Laboratories Testing Protocol, Ames, Iowa, USA, 2011.
  62. N. L. Hines, Use of Monoclonal Antibodies in the Characterization of Newcastle Disease Virus, vol. SOP-AV-0802, National Veterinary Services Laboratories testing protocol, Ames, Iowa, USA, 2011.
  63. L. Yu, Z. Wang, Y. Jiang, L. Chang, and J. Kwang, “Characterization of newly emerging Newcastle disease virus isolates from the People's Republic of China and Taiwan,” Journal of Clinical Microbiology, vol. 39, no. 10, pp. 3512–3519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. J. C. Pedersen, Intracerebral Pathogenicity Index-ICPI-for Characterization of Newcastle Disease Virus, SOP-AV-2018, National Veterinary Services Laboratories testing protocol, Ames, Iowa, USA, 2011.
  65. J. C. Pedersen, Procedure for Determining Mean Death Time for Newcastle Disease Virus Isolates, SOP-AV-2016, National Veterinary Services Laboratories testing protocol, Ames, Iowa, USA, 2011.
  66. J. C. Pedersen, Cloacal Inoculation of Chickens to Determine Pathogenicity of Newcastle Disease Virus Isolates, vol. SOP-AV-2015, National Veterinary Services Laboratories testing protocol, Ames, Iowa, USA, 2011.
  67. J. L. Creelan, D. A. Graham, and S. J. McCullough, “Detection and differentiation of pathogenicity of avian paramyxovirus serotype 1 from field cases using one-step reverse transcriptase-polymerase chain reaction,” Avian Pathology, vol. 31, no. 5, pp. 493–499, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Logan, K. Edwards, and N. Saunders, Real-Time PCR, Current Technology and Applications, Caister Academic Press, Norfolk, UK, 2009.
  69. N. King, “Methods in molecular biology, RT-PCR protocols,” in Springer Protocols, pp. 199–201, Humana Press, New York, NY, USA, 2nd edition, 2010. View at Google Scholar
  70. “Chemistry Guide,” in Real-time PCR Systems, Applied Biosystems 7900HT Fast Real-Time PCR System and 7300/7500 Real-Time PCR Systems, chapter 1–3, 2005.
  71. “Basic principles of real-time PCR,” in Real-Time PCR: From Theory to Practice, pp. 12–19, Invitrogen Corporation, Carlsbad, Calif, USA, 2008.
  72. D. Nidqworski, L. Rabalski, and B. Gromadzka, “Detection and differentiation of virulent and avirulent strains of Newcastle disease virus by real-time PCR,” Journal of Virologic Methods, vol. 173, pp. 144–149, 2011. View at Google Scholar
  73. H. M. Pham, S. Konnai, T. Usui et al., “Rapid detection and differentiation of Newcastle disease virus by real-time PCR with melting-curve analysis,” Archives of Virology, vol. 150, no. 12, pp. 2429–2438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. B. Birren, E. D. Green, S. Klapholz et al., “Analyzing DNA,” in Genome Analysis: A Laboratory Manual, vol. 1, pp. 303–305, Cold Spring Harbor Laboratory Press, Plainview, NY, USA, 1997. View at Google Scholar
  75. M. Maxam and W. Gilbert, “A new method for sequencing DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 2, pp. 560–564, 1977. View at Google Scholar
  76. F. Sanger, S. Nicklen, and A.R. Coulson, “DNA sequencing with chain-terminating inhibitors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 12, pp. 5463–5467, 1977. View at Google Scholar
  77. M. A. Innis, D. H. Gelfand, and J. J. Sninsky, “Design and synthesis of primers,” in PCR Applications, Protocols for Functional Genomics, p. 524, Academic Press, San Diego, Calif, USA, 1999. View at Google Scholar
  78. A. Panda, Z. Huang, S. Elankumaran, D. D. Rockemann, and S. K. Samal, “Role of fusion protein cleavage site in the virulence of Newcastle disease virus,” Microbial Pathogenesis, vol. 36, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. M. S. Collins, J. B. Bashiruddin, and D. J. Alexander, “Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity,” Archives of Virology, vol. 128, no. 3-4, pp. 363–370, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. O. Werner, A. Römer-Oberdörfer, B. Köllner, R. J. Manvell, and D. J. Alexander, “Characterization of avian paramyxovirus type 1 strains isolated in Germany during 1992 to 1996,” Avian Pathology, vol. 28, no. 1, pp. 79–88, 1999. View at Google Scholar · View at Scopus