Table of Contents Author Guidelines Submit a Manuscript
Veterinary Medicine International
Volume 2012 (2012), Article ID 798502, 13 pages
http://dx.doi.org/10.1155/2012/798502
Research Article

Bovine Tuberculosis in Cattle in the Highlands of Cameroon: Seroprevalence Estimates and Rates of Tuberculin Skin Test Reactors at Modified Cut-Offs

1School of Veterinary Medicine and Sciences, University of Ngaoundere, Ngaoundere, Adamawa Region, Cameroon
2Department of Animal Sciences, University of Dschang, Dschang, West Region, Cameroon
3School of Biomedical and Biological Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
4Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
5Institute of Agricultural research for Development (IRAD), Wakwa- Ngaoundere, Adamawa Region, Cameroon
6Institute of Animal Breeding and Husbandry, University of Kiel, Kiel, Germany
7Department of Mathematics and Computer Science, University of Dschang, Dschang, West Region, Cameroon
8Heifer Project International, P.O. Box 467, Bamenda, North West Region, Cameroon
9Delegation of Livestock, Fisheries and Animal Husbandry, North West Region, Cameroon

Received 19 October 2011; Revised 10 January 2012; Accepted 22 January 2012

Academic Editor: Jesse M. Hostetter

Copyright © 2012 J. Awah-Ndukum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. de la Rua-Domenech, T. Goodchild, M. Vordermeier, and R. Clifton-Hadley, “Ante mortem diagnosis of Bovine Tuberculosis: the significance of unconfirmed test reactors,” Government Veterinary Journal, vol. 16, no. 1, pp. 65–71, 2006. View at Google Scholar
  2. R. de la Rua-Domenech, A. T. Goodchild, H. M. Vordermeier, R. G. Hewinson, K. H. Christiansen, and R. S. Clifton-Hadley, “Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques,” Research in Veterinary Science, vol. 81, no. 2, pp. 190–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. World Organisation for Animal Health (OIE), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2009. OIE Terrestrial Manual 2008, World Organisation for Animal Health, Paris, France, 2009.
  4. M. L. Monaghan, M. L. Doherty, J. D. Collins, J. F. Kazda, and P. J. Quinn, “The tuberculin test,” Veterinary Microbiology, vol. 40, no. 1-2, pp. 111–124, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Francis, C. L. Choi, and A. J. Frost, “The diagnosis of tuberculosis in cattle with special reference to bovine PPD tuberculin,” Australian Veterinary Journal, vol. 49, no. 5, pp. 246–251, 1973. View at Google Scholar · View at Scopus
  6. B. M. Buddle, P. G. Livingstone, and G. W. de Lisle, “Advances in ante-mortem diagnosis of tuberculosis in cattle,” New Zealand Veterinary Journal, vol. 57, no. 4, pp. 173–180, 2009. View at Google Scholar · View at Scopus
  7. B. N. R. Ngandolo, B. Müller, C. Diguimbaye-Djaïbe et al., “Comparative assessment of fluorescence polarization and tuberculin skin testing for the diagnosis of bovine tuberculosis in Chadian cattle,” Preventive Veterinary Medicine, vol. 89, no. 1-2, pp. 81–89, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. R. R. Kazwala, D. M. Kambarage, C. J. Daborn, J. Nyange, S. F. H. Jiwa, and J. M. Sharp, “Risk factors associated with the occurrence of bovine tuberculosis in cattle in the Southern Highlands of Tanzania,” Veterinary Research Communications, vol. 25, no. 8, pp. 609–614, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Ameni, G. Hewinson, A. Aseffa, D. Young, and M. Vordermeier, “Appraisal of interpretation criteria for the comparative intradermal tuberculin test for diagnosis of tuberculosis in cattle in central Ethiopia,” Clinical and Vaccine Immunology, vol. 15, no. 8, pp. 1272–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Good and A. Duignan, “Perspectives on the history of Bovine TB and the role of tuberculin in Bovine TB eradication,” Veterinary Medicine International, vol. 2011, Article ID 410470, 11 pages, 2011. View at Publisher · View at Google Scholar
  11. M. V. Palmer and W. R. Waters, “Bovine tuberculosis and the establishment of an eradication program in the United States: role of veterinarians,” Veterinary Medicine International, vol. 2011, Article ID 816345, 12 pages, 2011. View at Publisher · View at Google Scholar
  12. J. M. Pollock, J. McNair, H. Bassett et al., “Specific delayed-type hypersensitivity responses to ESAT-6 identify tuberculosis-infected cattle,” Journal of Clinical Microbiology, vol. 41, no. 5, pp. 1856–1860, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Amadori, S. Tameni, P. Scaccaglia, S. Cavirani, I. L. Archetti, and R. Q. Giandomenico, “Antibody tests for identification of Mycobacterium bovis- infected bovine herds,” Journal of Clinical Microbiology, vol. 36, no. 2, pp. 566–568, 1998. View at Google Scholar · View at Scopus
  14. M. L. Thom, J. C. Hope, M. McAulay et al., “The effect of tuberculin testing on the development of cell-mediated immune responses during Mycobacterium bovis infection,” Veterinary Immunology and Immunopathology, vol. 114, no. 1-2, pp. 25–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Ameni, H. Miörner, F. Roger, and M. Tibbo, “Comparison between comparative tuberculin and gamma-interferon tests for the diagnosis of bovine tuberculosis in Ethiopia,” Tropical Animal Health and Production, vol. 32, no. 5, pp. 267–276, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Quirin, V. Rasolofo, R. Andriambololona et al., “Validity of intradermal tuberculin testing for the screening of bovine tuberculosis in Madagascar,” Onderstepoort Journal of Veterinary Research, vol. 68, no. 3, pp. 231–238, 2001. View at Google Scholar · View at Scopus
  17. K. Lyashchenko, A. O. Whelan, R. Greenwald et al., “Association of Tuberculin-Boosted Antibody Responses with Pathology and Cell-Mediated Immunity in Cattle Vaccinated with Mycobacterium bovis BCG and Infected with M. bovis,” Infection and Immunity, vol. 72, no. 5, pp. 2462–2467, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. P. Lyashchenko, J. M. Pollock, R. Colangeli, and M. L. Gennaro, “Diversity of antigen recognition by serum antibodies in experimental bovine tuberculosis,” Infection and Immunity, vol. 66, no. 11, pp. 5344–5349, 1998. View at Google Scholar · View at Scopus
  19. G. Ameni, A. Aseffa, G. Hewinson, and M. Vordermeier, “Comparison of different testing schemes to increase the detection Mycobacterium bovis infection in Ethiopian cattle,” Tropical Animal Health and Production, vol. 42, no. 3, pp. 375–383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Pollock, M. D. Welsh, and J. McNair, “Immune responses in bovine tuberculosis: towards new strategies for the diagnosis and control of disease,” Veterinary Immunology and Immunopathology, vol. 108, no. 1-2, pp. 37–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. U. Wernery, J. Kinne, K. L. Jahans et al., “Tuberculosis outbreak in a dromedary racing herd and rapid serological detection of infected camels,” Veterinary Microbiology, vol. 122, no. 1-2, pp. 108–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. W. R. Waters, M. V. Palmer, T. C. Thacker et al., “Early antibody responses to experimental Mycobacterium bovis infection of cattle,” Clinical and Vaccine Immunology, vol. 13, no. 6, pp. 648–654, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Martrenchar, B. M. Njanpop, A. Yaya, A. Njoya, and J. J. Tulasne, “Problems associated with tuberculosis and brucellosis skin-test methods in northern Cameroon,” Preventive Veterinary Medicine, vol. 15, no. 2-3, pp. 221–229, 1993. View at Google Scholar · View at Scopus
  24. P. Merlin and P. Tsangueu, “Incidence de la tuberculose bovin dans le nord ouest du Cameroun,” Revue Scientifique et Technologique, vol. 1, no. 4, pp. 89–93, 1985. View at Google Scholar
  25. P. K. Muchaal, Assessment of Bovine Tuberculosis (Mycobacterium bovis) and Risk Factors of Transmission in the Peri-Urban Centres of Bamenda, Northwest Province (Cameroon), in Urban Agriculture and Zoonoses in West Africa: An Assessment of the Potential Impact on Public Health, The International Development Research Centre (IDRC), Ottawa, Canada, 2002.
  26. A. N. Nfi and C. Ndi, “Bovine tuberculosis at the animal research antenna (ARZ) Bangangte, Western province, Cameroon,” Bulletion of Animal Production and Health in Africa, vol. 45, pp. 1–3, 1997. View at Google Scholar
  27. V. N. Tanya, J. N. S. Sallah, and K. R. Tayou, “Screening for bovine tuberculosis at Wakwa,” Revue Scientifique et Technologique, vol. 1, no. 2, pp. 65–68, 1985. View at Google Scholar
  28. M. Thrusfield, Veterinary Epidemiology, Blackwell Science, Oxford, UK, 3rd edition, 2007.
  29. E. Costello, J. W. A. Egan, F. C. Quigley, and P. F. O'Reilly, “Performance of the single intradermal comparative tuberculin test in identifying cattle with tuberculous lesions in Irish herds,” Veterinary Record, vol. 141, no. 9, pp. 222–224, 1997. View at Google Scholar · View at Scopus
  30. G. M. Shirima, R. R. Kazwala, and D. M. Kambarage, “Prevalence of bovine tuberculosis in cattle in different farming systems in the eastern zone of Tanzania,” Preventive Veterinary Medicine, vol. 57, no. 3, pp. 167–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Greiner and I. A. Gardner, “Application of diagnostic tests in veterinary epidemiologic studies,” Preventive Veterinary Medicine, vol. 45, no. 1-2, pp. 43–59, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Petrie and P. Watson, Statistics for Veterinary and Animal Science, Blackwell Science, Oxford, UK, 1999.
  33. J. Awah-Ndukum, A. C. Kudi, G. Bradley, I. N. Ane-Anyangwe, S. Fon-Tebug, and J. Tchoumboue, “Prevalence of bovine tuberculosis in abattoirs of the Littoral and Western highland regions of Cameroon: a cause for public health concern,” Veterinary Medicine International, vol. 2010, Article ID 495015, 8 pages, 2010. View at Publisher · View at Google Scholar
  34. J. Awah-Ndukum, J. Tchoumboue, and A. T. Niba, “Prevalence of bovine tuberculosis at the SODEPA Douala abattoir, Cameroon (1995–2003),” Cameroon Journal of Experimental Biology, vol. 1, no. 2, pp. 116–120, 2005. View at Google Scholar
  35. A. Doufissa, “L'élevage bovin dans le M'béré,” MINEPIA Report, Ministry of Livestock, Fishery and Animal Industries, Yaounde, Cameroon, 1993. View at Google Scholar
  36. African Union/Interafrican Bureau for Animal Resources Nairobi (AU/IBAR), Pan African Animal Health Yearbook 2006, African Union/Interafrican Bureau for Animal Resources Nairobi, Nairobi, Kenya, 2006.
  37. MINEPIA, “La stratégie sectoriel de l'élevage, des peches et industries animales,” in Cabinet Management 2000 MINEPIA, A. Doufissa, Ed., Ministry of Livestock, Fisheries and Animal Industries, Yaounde, Yaounde, Cameroon, 2002. View at Google Scholar
  38. M. V. Palmer, W. R. Waters, T. C. Thacker, R. Greenwald, J. Esfandiari, and K. P. Lyashchenko, “Effects of different tuberculin skin-testing regimens on gamma interferon and antibody responses in cattle experimentally infected with Mycobacterium bovis,” Clinical and Vaccine Immunology, vol. 13, no. 3, pp. 387–394, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Ritacco, B. Lopez, I. N. De Kantor, L. Barrera, F. Errico, and A. Nader, “Reciprocal cellular and humoral immune responses in bovine tuberculosis,” Research in Veterinary Science, vol. 50, no. 3, pp. 365–367, 1991. View at Google Scholar · View at Scopus
  40. M. Vordermeier, S. V. Gordon, and R. G. Hewinson, “Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle,” Veterinary Microbiology, vol. 151, no. 1-2, pp. 8–13, 2011. View at Publisher · View at Google Scholar
  41. Bovine TB Ab, Anigen Rapid Bovine TB Ab Test Kit; Cat.No :RB 23-02, in Diagnostic Test Kits for Industrial Animals: Bionote Product catalog; Third Edition CIA03-03, BioNote Inc.: Gyeonggi-do, Korea.
  42. C. Whelan, E. Shuralev, G. O'Keeffe et al., “Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle,” Clinical and Vaccine Immunology, vol. 15, no. 12, pp. 1834–1838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. B. M. Buddle, T. Wilson, M. Denis et al., “Sensitivity, specificity, and confounding factors of novel serological tests used for the rapid diagnosis of bovine tuberculosis in farmed red deer (Cervus elaphus),” Clinical and Vaccine Immunology, vol. 17, no. 4, pp. 626–630, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Boadella, K. Lyashchenko, R. Greenwald et al., “Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa),” Journal of Veterinary Diagnostic Investigation, vol. 23, no. 1, pp. 77–83, 2011. View at Google Scholar
  45. H. R. Bermúdez, E. T. Renteria, B. G. Medina, S. Hori-Oshima, A. de la Mora Valle, and V. G. Lopez, “Evaluation of a lateral flow assay for the diagnosis of Mycobacterium bovis infection in dairy cattle,” Journal of Immunoassay and Immunochemistry, vol. 33, no. 1, pp. 59–65, 2012. View at Google Scholar
  46. G. Ameni and G. Medhin, “Effect of Gastro-intestinal Parasitosis on Tuberculin Test for the Diagnosis of Bovine Tuberculosis,” Journal of Applied Animal Research, vol. 18, no. 2, pp. 221–224, 2000. View at Google Scholar · View at Scopus
  47. F. O. Inangolet, B. Demelash, J. Oloya, J. Opuda-Asibo, and E. Skjerve, “A cross-sectional study of bovine tuberculosis in the transhumant and agro-pastoral cattle herds in the border areas of Katakwi and Moroto districts, Uganda,” Tropical Animal Health and Production, vol. 40, no. 7, pp. 501–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. C. O. Thoen, P. A. Lobue, D. A. Enarson, J. B. Kaneene, and I. N. de Kantor, “Tuberculosis: a re-emerging disease of animals and humans,” Veterinaria Italiana, vol. 45, no. 1, pp. 135–181, 2009. View at Google Scholar
  49. F. Biet, M. L. Boschiroli, M. F. Thorel, and L. A. Guilloteau, “Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium-intracellulare complex (MAC),” Veterinary Research, vol. 36, no. 3, pp. 411–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Oloya, J. Opuda-Asibo, B. Djønne et al., “Responses to tuberculin among Zebu cattle in the transhumance regions of Karamoja and Nakasongola district of Uganda,” Tropical Animal Health and Production, vol. 38, no. 4, pp. 275–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. J. C. Phillips, C. R. W. Foster, P. A. Morris, and R. Teverson, “The transmission of Mycobacterium bovis infection to cattle,” Research in Veterinary Science, vol. 74, no. 1, pp. 1–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. I. W. Lesslie and C. N. Herbert, “Comparison of the specificity of human and bovine tuberculin PPF for testing cattle. 3. National trial in Great Britain,” Veterinary Record, vol. 96, no. 15, pp. 338–341, 1975. View at Google Scholar · View at Scopus
  53. I. W. Lesslie, C. N. Herbert, and D. N. Barnett, “Comparison of the specificity of human and bovine tuberculin PPD for testing cattle. 2. South-eastern England,” Veterinary Record, vol. 96, no. 15, pp. 335–338, 1975. View at Google Scholar · View at Scopus
  54. I. W. Lesslie and C. N. Herbert, “Comparison of the specificty of human and bovine tuberculin PPD for testing cattle. 1-Republic of Ireland,” Veterinary Record, vol. 96, no. 15, pp. 332–334, 1975. View at Google Scholar · View at Scopus