Wireless Communications and Mobile Computing
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate33%
Submission to final decision81 days
Acceptance to publication37 days
CiteScore2.900
Impact Factor1.819

Research on Semiactive Control of Civil Engineering Structure Based on Neural Network

Read the full article

 Journal profile

Wireless Communications and Mobile Computing provides the R&D communities working in academia and the telecommunications and networking industries with a forum for sharing research and ideas in this fast moving field.

 Editor spotlight

Wireless Communications and Mobile Computing maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

From Hardware to Operating System: A Static Measurement Method of Android System Based on TrustZone

Android system has been one of the main targets of hacker attacks for a long time. At present, it is faced with security risks such as privilege escalation attacks, image tampering, and malicious programs. In view of the above risks, the current detection of the application layer can no longer guarantee the security of the Android system. The security of mobile terminals needs to be fully protected from the bottom to the top, and the consistency test of the hardware system is realized from the hardware layer of the terminal. However, there is not a complete set of security measures to ensure the reliability and integrity of the Android system at present. Therefore, from the perspective of trusted computing, this paper proposes and implements a trusted static measurement method of the Android system based on TrustZone to protect the integrity of the system layer and provide a trusted underlying environment for the detection of the Android application layer. This paper analyzes from two aspects of security and efficiency. The experimental results show that this method can detect the Android system layer privilege escalation attack and discover the rootkit that breaks the integrity of the Android kernel in time during the startup process, and the performance loss of this method is within the acceptable range.

Research Article

A Lossless Compression Approach Based on Delta Encoding and T-RLE in WSNs

The sending/receiving of data (data communication) is the most power consuming in wireless sensor networks (WSN) since the sensor nodes are depending on batteries not generally rechargeable characterized by limited capacity. Data compression is among the techniques that can help to reduce the amount of the exchanged data between wireless sensor nodes resulting in power saving. Nevertheless, there is a lack of effective methods to improve the efficiency of data compression algorithms and to increase nodes’ energy efficiency. In this paper, we proposed a novel lossless compression approach based on delta encoding and two occurrences character solving (T-RLE) algorithms. T-RLE is an optimization of the RLE algorithm, which aims to improve the compression ratio. This method will lead to less storage cost and less bandwidth to transmit the data, which positively affects the sensor nodes’ lifetime and the network lifetime in general. We used real deployment data (temperature and humidity) from the sensor scope project to evaluate the performance of our approach. The results showed a significant improvement compared with some traditional algorithms.

Research Article

Distributed Congestion Control via Outage Probability Model for Delay-Constrained Flying Ad Hoc Networks

Drastic changes in network topology of Flying Ad Hoc Networks (FANETs) result in the instability of the single-hop delay and link status accordingly. Therefore, it is difficult to implement the congestion control with delay-sensitive traffic according to the instantaneous link status. To solve the above difficulty effectively, we formulate the delay-aware congestion control as a network utility maximization, which considers the link capacity and end-to-end delay as constraints. Next, we combine the Lagrange dual method and delay auxiliary variable to decouple the link capacity and delay threshold constraints, as well as to update single-hop delay bound with the delay-outage mode. Built on the methods above, a distributed optimization algorithm is proposed in this work by considering the estimated single-hop delay bound for each transmission, which only uses the local channel information to limit the end-to-end delay. Finally, we deduce the relationship between the primal and dual solutions to underpin the advantages of the proposed algorithm. Simulation results demonstrate that the proposed algorithm effectively can improve network performances in terms of packet time-out rate and network throughput.

Research Article

A Lightweight Attribute-Based Security Scheme for Fog-Enabled Cyber Physical Systems

In this paper, a lightweight attribute-based security scheme based on elliptic curve cryptography (ECC) is proposed for fog-enabled cyber physical systems (Fog-CPS). A novel aspect of the proposed scheme is that the communication between Fog-CPS entities is secure even when the certification authority (CA) is compromised. This is achieved by dividing the attributes into two sets, namely, secret and shared, and subsequently generating two key pairs, referred to as the partial and final key pairs, for each entity of the Fog-CPS system. Unlike existing attribute-based encryption (ABE) and identity-based encryption schemes, in the proposed scheme, each entity calculates the final public key of the communicating CPS devices without the need of generating and transmitting digital certificates. Moreover, the proposed security scheme considers an efficient and secure key pair update approach in which the calculation overhead is limited to one group element. To show the effectiveness of the proposed scheme, we have calculated and compared the memory and processing complexity with other bilinear and elliptic curve schemes. We have also implemented our scheme in a Raspberry Pi (3B+ model) for CPS simulations. The proposed scheme guarantees the confidentiality, integrity, privacy, and authenticity in Fog-CPS systems.

Research Article

Smart River Monitoring Using Wireless Sensor Networks

Water quality monitoring (WQM) systems seek to ensure high data precision, data accuracy, timely reporting, easy accessibility of data, and completeness. The conventional monitoring systems are inadequate when used to detect contaminants/pollutants in real time and cannot meet the stringent requirements of high precision for WQM systems. In this work, we employed the different types of wireless sensor nodes to monitor the water quality in real time. Our approach used an energy-efficient data transmission schedule and harvested energy using solar panels to prolong the node lifetime. The study took place at the Weija intake in the Greater Accra Region of Ghana. The Weija dam intake serves as a significant water source to the Weija treatment plant which supplies treated water to the people of Greater Accra and parts of Central regions of Ghana. Smart water sensors and smart water ion sensor devices from Libelium were deployed at the intake to measure physical and chemical parameters. The sensed data obtained at the central repository revealed a pH value of 7. Conductivity levels rose from 196 S/cm to 225 S/cm. Calcium levels rose to about 3.5 mg/L and dropped to about 0.16 mg/L. The temperature of the river was mainly around 35°C to 36°C. We observed fluoride levels between 1.24 mg/L and 1.9 mg/L. The oxygen content rose from the negative DO to reach 8 mg/L. These results showed a significant effect on plant and aquatic life.

Research Article

Research on Sewage Monitoring and Water Quality Prediction Based on Wireless Sensors and Support Vector Machines

Water resource protection has an important impact on ecosystem security and human survival. Therefore, water quality testing and early warning of the sewage status are getting more and more attention. In order to solve the problems of information transmission delay and insufficient water quality prediction in current water quality monitoring, this paper proposes a wireless sensor-based dynamic water quality monitoring and prediction technology. Firstly, this paper uses the wireless sensor technology and ZigBee protocol to establish a sewage monitoring model and real-time dynamic monitoring of total nitrogen, total phosphorus, ammonia nitrogen, and other indicators of the water quality of the basin. Secondly, on the basis of wireless monitoring, a support vector algorithm is used to construct a water quality prediction model to make a reasonable prediction of the water quality of the watershed. Finally, the actual test results show that the technology can automatically and real-timely monitor the water quality of the watershed to meet the requirements of water quality monitoring in practical applications.

Wireless Communications and Mobile Computing
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics
Acceptance rate33%
Submission to final decision81 days
Acceptance to publication37 days
CiteScore2.900
Impact Factor1.819
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.