Table of Contents Author Guidelines Submit a Manuscript
Wireless Communications and Mobile Computing
Volume 2017 (2017), Article ID 1594270, 10 pages
https://doi.org/10.1155/2017/1594270
Research Article

A Dynamically Reconfigurable Wireless Sensor Network Testbed for Multiple Routing Protocols

1College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China
2College of Mathematics and Computer Science, Quanzhou Normal University, Quanzhou 362000, China
3Fujian Provincial Key Laboratory of Data Intensive Computing, Quanzhou 362000, China

Correspondence should be addressed to Wenxian Jiang; nc.ude.uqh@xwj

Received 20 May 2017; Accepted 23 August 2017; Published 8 November 2017

Academic Editor: Javier Prieto

Copyright © 2017 Wenxian Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin, “Wireless sensor networks: a survey on recent developments and potential synergies,” The Journal of Supercomputing, vol. 68, no. 1, pp. 1–48, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Grichi, O. Mosbahi, M. Khalgui, and Z. Li, “RWiN: New methodology for the development of reconfigurable WSN,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 1, pp. 109–125, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Latha and M. A. Bhagyaveni, “Reconfigurable FPGA based architecture for surveillance systems in WSN,” in Proceedings of the 2010 International Conference on Wireless Communication and Sensor Computing, ICWCSC 2010, January 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Bosshart, G. Gibb, H.-S. Kim et al., “Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN,” in Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication, ACM SIGCOMM 2013, pp. 99–110, August 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Bagchi, “Nano-kernel: A Dynamically Reconfigurable Kernel for WSN,” in Proceedings of the 1st International ICST Conference on Mobile Wireless Middleware, Operating Systems and Applications, Innsbruck, Austria, Feburary 2008. View at Publisher · View at Google Scholar
  6. L. P. Steyn and G. P. Hancke, “A survey of wireless sensor network testbeds,” in Proceedings of the IEEE Africon'11, zmb, September 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: a wireless sensor network testbed,” in Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN '05), pp. 483–488, April 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Crepaldi, S. Friso, A. Harris et al., “The design, deployment, and analysis of signetlab: A sensor network testbed and interactive management tool,” in Proceedings of the 3rd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, TridentCom 2007, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. Zhao, G.-H. Yang, Q. Liu, V. O. K. Li, and L. Cui, “EasiTest: a multi-radio testbed for heterogeneous wireless sensor networks,” in Proceedings of the IET International Conference on Wireless Sensor Network (IET-WSN '10), pp. 104–108, November 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. O. Rensfelt, F. Hermans, P. Gunningberg, L.-Å. Larzon, and E. Björnemo, “Repeatable experiments with mobile nodes in a relocatable WSN testbed,” The Computer Journal, vol. 54, no. 12, pp. 1973–1986, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Ju, H. Zhang, and D. Sakamuri, “NetEye: a user-centered wireless sensor network testbed for high-fidelity, robust experimentation,” International Journal of Communication Systems, vol. 25, no. 9, pp. 1213–1229, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Adjih, E. Baccelli, E. Fleury et al., “FIT IoT-LAB: A large scale open experimental IoT testbed,” in Proceedings of the 2nd IEEE World Forum on Internet of Things, WF-IoT 2015, pp. 459–464, ita, December 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam, “PLUG,” in Proceedings of the the ACM SIGCOMM 2009 conference, p. 207, Barcelona, Spain, August 2009. View at Publisher · View at Google Scholar
  14. A. Dunkels, B. Grönvall, and T. Voigt, “Contiki—a lightweight and flexible operating system for tiny networked sensors,” in Proceedings of the 29th IEEE Annual International Conference on Local Computer Networks (LCN '04), pp. 455–462, November 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Senouci, A. Mellouk, L. Oukhellou, and A. Aissani, “WSNs deployment framework based on the theory of belief functions,” Computer Networks, vol. 88, pp. 12–26, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed diffusion for wireless sensor networking,” IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, pp. 660–670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Tinyos home page, 2013, http://www.tinyos.net/.
  19. O. N. Foundation, Software-Defined Networking: The New Norm for Networks, White Paper, 2012.
  20. T. Luo, H.-P. Tan, and T. Q. S. Quek, “Sensor openflow: enabling software-defined wireless sensor networks,” IEEE Communications Letters, vol. 16, no. 11, pp. 1896–1899, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Mahmud, R. Rahmani, and T. Kanter, “Deployment of Flow-Sensors in Internet of Things' Virtualization via OpenFlow,” in Proceedings of the 2012 3rd FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing, MUSIC 2012, pp. 195–200, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and OpenFlow: from concept to implementation,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Horneber and A. Hergenroder, “A survey on testbeds and experimentation environments for wireless sensor networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1820–1838, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. A. De Gante, M. Aslan, and A. Matrawy, “Smart wireless sensor network management based on software-defined networking,” in Proceedings of the 27th Biennial Symposium on Communications (QBSC '14), pp. 71–75, Kingston, Canada, June 2014. View at Publisher · View at Google Scholar · View at Scopus