Table of Contents Author Guidelines Submit a Manuscript
Wireless Communications and Mobile Computing
Volume 2018, Article ID 5816765, 17 pages
https://doi.org/10.1155/2018/5816765
Research Article

A Secure and Scalable Data Communication Scheme in Smart Grids

1Key Laboratory of Dependable Service Computing in Cyber Physical Society, Chongqing University, Ministry of Education, Chongqing, China
2School of Software Engineering, Chongqing University, Chongqing, China
3Department of Electrical Engineering & Computer Science, The Catholic University of America, Washington, DC, USA
4Department of Computer Science, Texas Christian University, Fort Worth, TX, USA
5School of Electronics and Information Engineering, Beijing Jiaotong University, Beijing, China
6Department of Computer Science, The George Washington University, Washington DC, USA
7Department Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
8Beijing Key Laboratory of IOT Information Security Technology, Institute of Information Engineering, CAS, Beijing, China

Correspondence should be addressed to Chunqiang Hu; moc.liamg@4930qch and Qingyu Xiong; nc.ude.uqc@30gnoix

Received 5 August 2017; Accepted 13 November 2017; Published 19 March 2018

Academic Editor: Chaokun Wang

Copyright © 2018 Chunqiang Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Kaplan, “Electrical power transmission,” in Background and policy issues , TheCapital.Net, vol. Government, p. 42, Electrical power transmission, Background and policy issues, 2009. View at Google Scholar
  2. X. D. Wang and P. Yi, “Security framework for wireless communications in smart distribution grid,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 809–818, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. Q. Li and G. Cao, “Multicast authentication in the smart grid with one-time signature,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 686–696, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power & Energy Magazine, vol. 7, no. 2, pp. 52–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. “Guidelines for smart grid cyber security (vol. 1 to 3),” NIST, Tech. Rep. NIST IR-7628, Aug 2010, http://csrc.nist.gov/publications/PubsNISTIRs.html.
  6. G. Baker and A. Berg, “Supervisory control and data acquisition (scada) systems,” The Critical Infrastructure Protection Report, vol. 1, no. 6, pp. 5-6, 2002. View at Google Scholar
  7. C. Zimmer and F. Mueller, “Fault Tolerant Network Routing through Software Overlays for Intelligent Power Grids,” in Proceedings of the 2010 IEEE 16th International Conference on Parallel and Distributed Systems (ICPADS), pp. 542–549, Shanghai, China, December 2010. View at Publisher · View at Google Scholar
  8. Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation in electric power grids,” ACM Transactions on Information and System Security, vol. 14, no. 1, article 13, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Zheng, Z. Cai, J. Yu, C. Wang, and Y. Li, “Follow but no track: privacy preserved profile publishing in cyber-physical social systems,” IEEE Internet of Things Journal, 2017. View at Publisher · View at Google Scholar
  10. Y. Deng, C. Hu, R. Deng, and D. Liang, “A secure communication architecture in the smart grid,” in Proceedings of the 2017 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS), pp. 668–672, Dalian, July 2017. View at Publisher · View at Google Scholar
  11. J. Liu, Y. Xiao, S. Li, W. Liang, and C. L. P. Chen, “Cyber security and privacy issues in smart grids,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 981–997, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin, “Private memoirs of a smart meter,” in Proceedings of the the 2nd ACM Workshop, p. 61, Zurich, Switzerland, November 2010. View at Publisher · View at Google Scholar
  13. S. Ruj, A. Nayak, and I. Stojmenovic, A security architecture for data aggregation and access control in smart grids, 1111.2619, ArxivpreprintarXiv, 2011.
  14. C. Hu, Y. Huo, L. Ma, H. Liu, S. Deng, and L. Feng, “An Attribute-Based Secure and Scalable Scheme for Data Communications in Smart Grids,” in Wireless Algorithms, Systems, and Applications, vol. 10251 of Lecture Notes in Computer Science, pp. 469–482, Springer International Publishing, Cham, 2017. View at Publisher · View at Google Scholar
  15. C. Hu, X. Cheng, Z. Tian, J. Yu, K. Akkaya, and L. Sun, “An Attribute-Based Signcryption Scheme to Secure Attribute-Defined Multicast Communications,” in Security and Privacy in Communication Networks, vol. 164 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 418–437, Springer International Publishing, Cham, 2015. View at Publisher · View at Google Scholar
  16. H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signatures,” in Topics in cryptology-CT-RSA 2011, vol. 6558 of Lecture Notes in Comput. Sci., pp. 376–392, Springer, Heidelberg, Germany, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  17. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in Proceedings of the IEEE Symposium on Security and Privacy (SP '07), pp. 321–334, May 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Chaum and E. van Heyst, “Group Signatures,” in Advances in Cryptology — EUROCRYPT ’91, vol. 547 of Lecture Notes in Computer Science, pp. 257–265, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991. View at Publisher · View at Google Scholar
  19. C. Hu, X. Cheng, J. Yu, Z. Tian, and R. Bie, Achieving privacy preservation and billing via delayed information release , submittedtoIEEETransactionsonServiceComputing,.
  20. R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in Advances in Cryptology---ASIACRYPT, vol. 2248 of Lecture Notes in Comput. Sci., pp. 552–565, Springer, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  21. X. Boyen, “Mesh signatures: how to leak a secret with unwitting and unwilling participants,” in Advances in cryptology---{EUROCRYPT} 2007, vol. 4515 of Lecture Notes in Comput. Sci., pp. 210–227, Springer, Berlin, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  22. A. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in Advances in Cryptology—EUROCRYPT 2011, vol. 6632 of Lecture Notes in Computer Science, pp. 568–588, Springer, Heidelberg, Germany, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  23. M. Kgwadi and T. Kunz, “Securing RDS broadcast messages for smart grid applications,” International Journal of Autonomous and Adaptive Communications Systems, vol. 4, no. 4, pp. 412–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Guo, Y. Wu, H. Chen, and M. Ma, “A batch authentication protocol for v2?g communications,” in in NewTechnologies, Mobility and Security(NTMS, 2011 4th IFIP International Conference, pp. 1–5, IEEE, Paris, France, 2011, 1em plus 0.5em minus 0.4em. View at Google Scholar
  25. R. Lu, X. Liang, X. Li, X. Lin, and X. Shen, “EPPA: an efficient and privacy-preserving aggregation scheme for secure smart grid communications,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 9, pp. 1621–1632, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Li, Z. Aung, J. R. Williams, and A. Sanchez, “Efficient authentication scheme for data aggregation in smart grid with fault tolerance and fault diagnosis,” in Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT '12), pp. 1–8, IEEE, January 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. X. Zheng, Z. Cai, J. Li, and H. Gao, “Location-privacy-aware review publication mechanism for local business service systems,” in Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pp. 1–9, Atlanta, GA, USA, May 2017. View at Publisher · View at Google Scholar
  28. A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology – EUROCRYPT 2005, vol. 3494 of Lecture Notes in Computer Science, pp. 457–473, Springer, Berlin, Germany, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  29. V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proceedings of the 13th ACM Conference on Computer and Communications Security (CCS '06), pp. 89–98, November 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-based systems,” Journal of Computer Security, vol. 18, no. 5, pp. 799–837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Chase, “Multi-authority attribute based encryption,” in Theory of Cryptography, vol. 4392 of Lecture Notes in Computer Science, pp. 515–534, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar · View at MathSciNet
  32. H. K. So, S. H. Kwok, E. Y. Lam, and K. Lui, “Zero-Configuration Identity-Based Signcryption Scheme for Smart Grid,” in Proceedings of the 2010 1st IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 321–326, Gaithersburg, MD, USA, October 2010. View at Publisher · View at Google Scholar
  33. Z. M. Fadlullah, N. Kato, R. Lu, X. Shen, and Y. Nozaki, “Toward secure targeted broadcast in smart grid,” IEEE Communications Magazine, vol. 50, no. 5, pp. 150–156, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Hu, H. Li, Y. Huo, T. Xiang, and X. Liao, “Secure and Efficient Data Communication Protocol for Wireless Body Area Networks,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 2, pp. 94–107, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Chen, J. Chen, H. W. Lim, Z. Zhang, and D. Feng, “Combined public-key schemes: the case of abe and abs,” in Provable security, vol. 7496 of Lecture Notes in Comput. Sci., pp. 53–69, Springer, Heidelberg, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  36. C. Hu, X. Liao, and X. Cheng, “Verifiable multi-secret sharing based on {LFSR} sequences,” Theoretical Computer Science, vol. 445, pp. 52–62, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  37. C. Hu, A. Alhothaily, A. Alrawais, X. Cheng, C. Sturtivant, and H. Liu, “A secure and verifiable outsourcing scheme for matrix inverse computation,” in Proceedings of the IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pp. 1–9, Atlanta, GA, USA, May 2017. View at Publisher · View at Google Scholar
  38. B. Lynn, On the implementation of pairing-based cryptosystems [Ph.D. thesis], Stanford University, Calif, USA, 2007, Ph.D. dissertation.
  39. A. Beimel, Secure schemes for secret sharing and key distribution [Ph.D. thesis], Israel Institute of Technology, Technion, Haifa, Israel, 1996, Ph.D. dissertation.
  40. C. Hu, N. Zhang, H. Li, X. Cheng, and X. Liao, “Body area network security: a fuzzy attribute-based signcryption scheme,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 9, pp. 37–46, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption scheme,” in Advances in cryptology---{EUROCRYPT} 2003, vol. 2656 of Lecture Notes in Comput. Sci., pp. 255–271, Springer, Berlin, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  42. C. H. Tan, “Chosen ciphertext security from identity-based encryption without strong condition,” in Advances in information and computer security, vol. 4266 of Lecture Notes in Comput. Sci., pp. 292–307, Springer, Berlin, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  43. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing,” in Advances in Cryptology—CRYPTO 2001, vol. 2139 of Lecture Notes in Computer Science, pp. 213–229, 2001. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  44. M. Bellare and P. Rogaway, “Random oracles are practical,” in Proceedings of the the 1st ACM conference, pp. 62–73, Fairfax, Virginia, United States, November 1993. View at Publisher · View at Google Scholar
  45. B. Waters, “Efficient identity-based encryption without random oracles,” in Advances in cryptology---{EUROCRYPT} 2005, vol. 3494 of Lecture Notes in Comput. Sci., pp. 114–127, Springer, Berlin, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  46. B. Waters, “Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization,” in Public Key Cryptography—PKC 2011, D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi, Eds., vol. 6571 of Lecture Notes in Computer Science, pp. 53–70, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  47. V. Shoup, “Lower bounds for discrete logarithms and related problems,” in Advances in cryptology---{EUROCRYPT} '97 (Konstanz), vol. 1233 of Lecture Notes in Comput. Sci., pp. 256–266, Springer, Berlin, 1997. View at Google Scholar · View at MathSciNet
  48. D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts,” in Theory of Cryptography, vol. 3378 of Lecture Notes in Computer Science, pp. 325–341, Springer, Berlin, Germany, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  49. D. M. Freeman, “Converting pairing-based cryptosystems from composite-order groups to prime-order groups,” in Advances in Cryptology—EUROCRYPT 2010, vol. 6110 of Lecture Notes in Computer Science, pp. 44–61, Springer, Berlin, Heidelberg, Germany, 2010. View at Publisher · View at Google Scholar · View at MathSciNet
  50. J. A. Akinyele, C. Garman, I. Miers et al., “Charm: a framework for rapidly prototyping cryptosystems,” Journal of Cryptographic Engineering, vol. 3, no. 2, pp. 111–128, 2013. View at Publisher · View at Google Scholar · View at Scopus
  51. L. B. Oliveira, D. F. Aranha, C. P. L. Gouvêa et al., “TinyPBC: pairings for authenticated identity-based non-interactive key distribution in sensor networks,” Computer Communications, vol. 34, no. 3, pp. 485–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Miyaji, M. Nakabayashi, and S. Takano, “Characterization of Elliptic Curve Traces Under FR-Reduction,” in Information Security and Cryptology — ICISC 2000, vol. 2015 of Lecture Notes in Computer Science, pp. 90–108, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. View at Publisher · View at Google Scholar
  53. P. S. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order,” in Selected areas in cryptography, vol. 3897 of Lecture Notes in Comput. Sci., pp. 319–331, Springer, Berlin, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  54. X. Liang, R. Lu, X. Lin, and X. S. Shen, “Ciphertext policy attribute based encryption with efficient revocation,” Tech. Rep., University of Waterloo, 2010. View at Google Scholar
  55. J. López and R. Dahab, “High-speed software multiplication in ,” in Progress in cryptology---{INDOCRYPT} 2000 (Calcutta), vol. 1977 of Lecture Notes in Comput. Sci., pp. 203–212, Springer, Berlin, Germany, 2000. View at Publisher · View at Google Scholar · View at MathSciNet
  56. Z. Liu and Z. Cao, “On efficiently transferring the linear secret-sharing scheme matrix in ciphertext-policy attribute-based encryption , Cryptology ePrint Archive,” Tech. Rep. 2010/374, Tech., 2010. View at Google Scholar