Abstract
The rapidly increasing number of smart devices deployed in the Industrial Internet of Things (IIoT) environment has been witnessed. To improve communication efficiency, edge computingenabled Industrial Internet of Things (EIIoT) has gained attention recently. Nevertheless, EIIoT still cannot conquer the rapidly increasing communication demands when hundreds of millions of IIoT devices are connected at the same time. Considering the future 6G environment where smart networkinbox (NIB) nodes are everywhere (e.g., deployed in vehicles, buses, backpacks, etc.), we propose a crowdsourcingbased recruitment framework, leveraging the power of the crowd to provide extra communication resources and enhance the communication capabilities. We creatively treat NIB nodes as edge layer devices, and CrowdBox is devised using a Stackelberg game where the EIIoT system is the leader, and the NIB nodes are the followers. CrowdBox can calculate the optimal reward to reach the unique Stackelberg equilibrium where the utility of EIIoT can be maximized while none of the NIB nodes can improve its utility by deviating from its strategy. Finally, we evaluate the performance of CrowdBox with extensive simulations with various settings, and it shows that CrowdBox outperforms the compared algorithms in improving system utility and attracting more NIB nodes.
1. Introduction
The Industrial Internet of Things (IIoT), an important part of IoT [1], brings Internet access to all industrial assets including industrial devices and control systems [2]. As one of the basic pillars of digital manufacturing, IIoT changes the traditional manufacturing lines and systems significantly [3]. With the flexibility and scalability brought by wireless links [4], it paves the way for efficient and sustainable production in the era of Industry 4.0.
However, the emergence of IIoT applications results in a tenfold increase in the amount of data generated by industrial devices [5]. It would be a disaster for the network if that size of data which is produced at the edge of the network is transferred to the cloud directly. Not only the data volume but also traditional cloud computing is unable to deal with the various requirements such as data privacy and response time limitation. So, it will be more efficient to process the data at the edge of the network.
Edge computing (EC) is a new architecture [6–8] extending the cloud paradigm to the network edges, and it has attracted attention from both academia and industry recently since a large number of critical problems in IIoT (e.g., resource limitation [9], latency [10], and privacy [11]) could be solved with it easily. The combination of EC and IIoT, the socalled edge computingenabled Industrial Internet of Things (EIIoT), enables the design of highperformance and adaptive systems for IIoT [12]. Therefore, many edge computingenabled new IIoT architectures and platforms have been proposed and devised to improve the service efficiency [13–15] from different aspects in the last few years.
With the rapid development of wireless communication technologies (e.g., the sixthgeneration communication technology) and new urban infrastructures (e.g., personal communication devices, edge servers, and smart vehicles), many new smart devices will emerge. Chen et al. [16] believe that 6G will merge computation and sensing with communications, so the functions of new smart devices will be more complex. In addition, the strong mobility of edge nodes has become the trend of development [17].
Networkinbox [18, 19] is a burgeoning technology to enhance network reliability, and its application significance is becoming more and more obvious with the development of edge computing and sixthgeneration communication techniques. The design of NIB is focused on portability, so the NIB can move according to the requirement of the whole network. An NIB node can work alone as well as cooperate with other network elements. Some typical use cases of NIB including afterdisaster scenario, connectivity provisioning in challenging contexts, and tactical networks are investigated in [20]. With the NIB node as the edge server, a more reliable and more flexible networking environment can be provided for the EIIoT system.
1.1. Motivation
Crowdsourcing has been proven to be effective in task delivering applications including Amazon Mechanical Turks (AMT) [21–23]. The requirements for communication resources of devices can be regarded as a task, and NIB is responsible for fulfilling the task. In this paper, we propose to utilize the power of crowdsourced NIB nodes to improve communication capabilities at the edge layer. Although NIB brings great flexibility to the EIIoT system, it is still an urgent problem to motivate NIB nodes to provide additional communication resources for devices. In order to better understand the problem, we build a Stackelberg game between the EIIoT system and NIB nodes. By studying the Nash equilibrium, we can find the best response strategy of an NIB node, and the incentive problem could be solved at the same time.
1.2. Contributions
In this paper, we establish a crowdsourcingbased networkinbox recruitment platform. As far as we know, our work is the first to conceive a crowdsourcingbased recruitment platform in the EIIoT environment. The main contributions of this paper are summarized as follows: (i)We present an analytical model for the recruitment of NIB nodes where they can improve the system communication capabilities by crowdsourcing(ii)For the recruitment problem, the utility function for the system and NIB nodes are formulated; then, the whole process is described as a Stackelberg game with two stages(iii)The Nash equilibrium is defined, and CrowdBox is proposed to calculate the Nash equilibrium point. Finally, the best strategy of NIB nodes and EIIot are both found(iv)To prove the effectiveness and feasibility of CrowdBox, we both put forward the theoretical explanation and conduct extensive simulations. It turns out that CrowdBox achieves better performance than other benchmarks
1.3. Organization of the Paper
The rest of this paper is organized as follows. Section 2 discusses the related work. We introduce the system model of our network and the formulated problem in Section 3. Section 4 presents the definition of CrowdBox and details of the whole game process. Evaluation settings and numerical results are presented in Section 5. Finally, Section 6 concludes the paper.
2. Related Work
By leveraging the concept of crowdsourcing, many IIoT problems have been solved. The author in [24] emphasizes the impressive amounts of data by introducing crowdsourcing to IIoT which provides the opportunity to perform more advanced processes and applications. Also, a mobile crowdsensing and mobile crowdsourcingbased IIoT architecture is proposed in their work. In the field of the smart city which is an important application scenario of IIoT, Kong et al. [25] utilize crowdsourcing to collect and compute decentralized ubiquitous sensing data. The objective is to solve major urbanization problems in smart cities. As crowdsourcing is widely used for data collection and computing, privacy protection in this process has also become a direction of crowdsourcing research. A personalized privacy protection framework is proposed for mobile crowdsensing in [26]. Theoretical analysis and simulations show that the framework can make a balance between the quality of crowdsensing services and privacy. When the crowdsourcing IIoT data is stored in the cloud, Karati et al. [27] propose a new identitybased signcryption schema to meet the requirement of authenticity and confidentiality.
From the perspective of IIoT devices, resources from the edge servers are shared to enhance the ability of the whole network. So, our work is also somewhat similar to resource allocation in the EIIoT system, and we also summarize it briefly. In [28], mobile edge computation offloading is considered on different multiple access technologies. Resource allocation is formulated as an optimization problem with mobile energy consumption as the constraint. Sun [29] discuss the joint optimization problem of network economics and resource allocation in mobile edge computing. They propose two double auction schemes which both use dynamic pricing to establish connections of IIoT devices and edge servers. To improve the cognitive ability of edge intelligent IIoT, an MLenabled framework is proposed in [30]. Via this framework, IIoT is able to make reasonable decisions at the network edge. Furthermore, deep reinforcement learning is invoked and shows good performance in an observable IIoT environment.
To realize the objective of optimization, gamebased approaches have been applied in communication networks [31]. The Stackelberg game is a typical one to design interactive schemes in wireless networks. When the problem comes to resource allocation, Zhang [32] formulate a Stackelberg game to analyze the problem and apply a matching game to achieve satisfying performance. Yao et al. [33] invoke the Stackelberg game to model the interaction between the resource provider and miners. In [34], Jie et al. transfer the resource allocation problem to a doublestage Stackelberg game to maximize resource utilization. The Stackelberg game is also used in [35] to offload computation in IIoT, and the existence and uniqueness of equilibrium are analyzed. To sum up, the insight of crowdsourcing can help us formulate the problem as a recruitment problem. After that, the Stackelberg game can be utilized to motivate the NIB nodes to share their resources and make sure the IIot devices get the resources they need.
3. System Model and Problem Formulation
This section first introduces the system model of the edge computingenabled Industrial Internet of Things (EIIoT) system, then formulates the crowdsourcingbased networkinbox recruitment problem as a Stackelberg game.
3.1. System Model
Figure 1 is utilized to aid our description of the EIIoT system. Similar to the other edge computing systems, EIIoT mainly includes three layers—the cloud layer, the edge layer, and the device layer. To fulfill industrial missions from factories, EIIoT devices have to upload their sensing data to edge/cloud nodes, and the following instructions will be directed to EIIoT devices after the uploaded sensing data are processed by edge and cloud servers.
However, the existing communication resource at the edge layer may not be enough to satisfy the EIIoT system when some edge nodes are broken down or sudden communication demands (e.g., factory adds many IIoT at the same time suddenly) are required. To overcome these difficulties, we propose to recruit crowdsourcing networkinbox nodes (e.g., box in buses, vehicles, packages, etc.) as temporary edge nodes to expand the network and offload sensing data from IIoT devices to servers and meet the communication needs finally.
Here, we treat the communication resource collection of the NIB nodes for EIIoT as a task. To be specific, different from the general NIB deployment system where NIB nodes contribute their communication resource passively, the enterprise (i.e., resource consumer) could buy communication resources from participating NIB nodes with the total reward within a specific time period (e.g., one hour). Further, the NIB nodes could also select their participating levels (i.e., how long to contribute their communication resource) when using CrowdBox during daily life. The NIB nodes will select to participate only when the received reward could cover its cost in both data communication and data processing. Eventually, the NIB nodes could obtain the corresponding reward based on the participating levels of the total reward of the system and all NIB nodes.
In a word, crowdsourcing NIB nodes will have some costs when they provide communication resources to the system, and EIIoT will offer some corresponding rewards to stimulate crowdsourcing EIIoT nodes who perform the communication task and provide the communication resource. Actually, this is a gaming process, and we will formulate it with the Stackelberg gaming theory in the next subsection.
3.2. Problem Formulation
The EIIoT system has one communication task (i.e., provide communication resources as more as possible) for all NIB nodes at the edge layer. To recruit NIB nodes fulfilling the communication task, the EIIoT system announces a total reward , where . According to the reward, each participant will choose their own participation level. To be specific, the participation level (strategy) of NIB node is which denotes the time duration it can provide the communication service. It is assumed that all NIB nodes are available when they choose to participate in the task, and they contribute equally at any time during the task period. The unit cost of NIB node is denoted as , and we can compute the utility of NIB node as where is the reward that NIB node will get after participating in the task and is its total cost for completing the task. It should be noticed that a rational NIB node will not cooperate with a negative utility, so NIB node will do nothing (i.e., ) when . Thus, the equation should be rewritten as
According to equation (2), it is not hard to find that NIB nodes would like to choose the same plan (strategy) to maximize their utility when they have the same unit cost. Here, we define the unit cost set , and we have . All NIB nodes with the same unit cost will choose the same strategy if they want to maximize their utilities.
Therefore, the expected participation time duration for a specific unit cost is denoted by , and we also have the expected participation time duration set correspondingly. Besides, the number of NIB nodes whose unit costs are the same is defined as , and the set of the number of NIB nodes is . Based on the above definitions, the utility function of EIIoT can be computed as follows: where presents the valuation function of all NIB nodes’ participation time of the EIIoT system.
The goal of EIIoT is to choose the optimal value of reward to maximize equation (3). It is assumed that the utility function of EIIoT is a strictly concave function in variables for any fixed and increasing monotonically for every of NIB node , and this is a general assumption in many other related papers [36]. Each NIB node decides its strategy (i.e., ) to maximize equation (2) with a given reward value .
In the next section, we will model the whole NIB node recruitment process as a Stackelberg game with two stages and depict how to determine the optimal reward value to maximize the utility of the EIIoT system. Besides, detailed explanations of employed notations in this paper are concluded in Table 1.
4. CrowdBox
The crowdsourcingbased networkinbox recruitment for edge computingenabled Industrial Internet of Things process is modeled as a Stackelberg game (CrowdBox), and it has two stages. In the first stage, the EIIoT system posts its reward for the communication task and recruit NIB nodes to participate. Accordingly, the NIB node chooses a response strategy (i.e., service time duration it could provide) to maximize its own utility based on the given reward in the second stage. Essentially, the EIIoT system is the leader and the NIB nodes are the followers.
The Nash equilibrium is a stable status and very important for a game since no players can obtain extra profits by changing their strategy. For the NIB node, we first define the Nash equilibrium and its best response strategy. We prove that NIB nodes have a unique Nash equilibrium for any given reward . Based on the utility function of the NIB node, we analyze the best response strategy of NIB nodes and show how to compute it. For the EIIoT system, we also define its Nash equilibrium and the corresponding best response strategy and propose how to calculate the optimal reward (i.e., the best response strategy for the EIIoT system) to maximize the EIIoT system’s utility.
In sum, we show that the Stackelberg game we proposed has a unique Stackelberg equilibrium and how to calculate the optimal reward value to maximize EIIoT’s utility in this section.
4.1. NIB Node Nash Equilibrium
To study the NIB node strategy, we first define the Nash equilibrium of NIB node as below.
Definition 2 (Nash equilibrium of NIB nodes). A strategy set is a Nash equilibrium, when any NIB node meets equation (18):
We also give the definition of the best response strategy for NIB node as the following.
Definition 3 (best response strategy of NIB nodes). Strategy for NIB node , denoted by , is the best response strategy if it maximizes over all .
Given a reward from the EIIoT system, NIB node would like to choose the best response strategy to maximize its utility (i.e., equation (2)). An NIB node would like to play its best response strategy in Nash equilibrium.
To study the best response strategy of NIB node , we compute the derivatives and second order of utility function with respect to as
It is very obvious that the secondorder derivative , so the utility function of NIB node is a strictly concave function. By setting the firstorder derivative , we have
Sorting out equation (7), we can obtain
Obviously, the best response strategy of node can be summarized as
The above analysis shows that any NIB node has its best response strategy for any given reward and strategy profile of other NIB nodes. Next, we define the NIB node set , and it is easy to get that . Therefore, we can get
Adding up equation (10) over all NIB nodes in , we have
Therefore, we obtain
To calculate for NIB node , equation (10) can also be rewritten as
Substituting equation (12) into equation (13), we can calculate the best response strategy for NIB node as
In addition, the unit cost set is denoted as , where for any NIB node . The distribution of usually could be learned from the historical data by the EIIoT system, and it is also a realistic assumption adopted in the literature [37]. According to equation (14), we can compute the Nash equilibrium of NIB nodes.
So far, we have known how to calculate the Nash equilibrium for any NIB node with any given reward value in the EIIoT system. In the next subsection, we will show how to choose the optimal reward value to maximize the EIIoT system’s utility.
4.2. Maximizing Utility of EIIoT
Obviously, the EIIoT system, which is the leader of the Stackelberg game, can know the existing NIB node Nash equilibrium based on the above analysis. To be specific, EIIoT can select the optimal reward value to maximize its utility based on the following equations: where
For each , we have where is a strictly concave function, could be obtained by Algorithm 1, and could be calculated according to the previous statistics by analyzing the historical data.

Next, we define the Nash equilibrium of the EIIoT system as below.
Definition 4 (Nash equilibrium of the EIIoT system). The chosen reward value is a Nash equilibrium of the EIIoT system if it can make the EIIoT system reach the maximum utility.
Besides, the best response strategy of the EIIoT system is defined as below.
Definition 5 (best response strategy of the EIIoT system). The optimal reward value is the best response strategy with the given NIB node Nash equilibrium strategy set , and meets
In summary, it can be concluded that the Nash equilibrium exists in this Stackelberg game, and the optimal reward can maximize the utility function in equation (15) over . To calculate , many efficient methods could be leveraged, such as Newton’s method [38].
5. Performance Evaluation
We have studied CrowdBox theoretically, and this section evaluates the performances of CrowdBox in realistic problem settings. In the following, we mainly elaborate on the simulation settings, compared algorithms, performance metrics, and results separately.
5.1. Simulation Settings
We assume that the EIIoT system has been widely deployed in the industry, and a large amount of IIoT devices require the communication resources to communicate with the edge and cloud servers. To satisfy the demands, a set of NIB nodes could be employed at the edge layer to improve the communication capacity of the system with a given reward value .
The default values of simulation settings are defined as the following. In the EIIoT system, the costs of NIB nodes are distributed uniformly over , and the number of NIB nodes is equal to . We set the , where and , since represents EIIoT’s diminishing return on the work of an NIB node with unit cost , and denotes EIIoT’s diminishing return on the number of participating NIB nodes. Unless otherwise specified, we use the default values to conduct the following simulations.
5.2. Compared Algorithms (Strategies)
In order to evaluate the performances of CrowdBox, we adopted two compared strategies (benchmarks)—random and best effort strategy. Both two strategies are general game theorybased methods adopted in many related fields, and the basic ideas are as follows.
5.2.1. Best Effort Strategy
NIB node is always trying its best to provide the communication resource (i.e., , where could be computed by setting for NIB node ) only if it can obtain the profit (i.e., the NIB node utility is larger than zero) from the EIIoT system.
5.2.2. Random Strategy
The strategy of NIB node is selected by itself based on its own preferences at random. For each NIB node , we define a maximum cooperation time duration , and NIB node can choose the random value in .
5.3. Performance Metrics and Results
Four major metrics are leveraged to measure the effectiveness of our proposed algorithm and benchmarks, including the system utility, total participation level, average participation level, and the number of participating NIB nodes during the whole Stackelberg game process.
The system utility has been introduced in Section 3, and it is the main metric to measure the algorithm performance; the total participation level is defined as the sum of NIB node strategy ; the average participation level can be computed by the total participation level divided by the number of participating NIB nodes; the number of participating NIB nodes is the number of nodes whose during the game process.
By changing the value of NIB nodes and the number of NIB nodes’ maximum cost for the system, we show the performances of CrowdBox and the other two benchmarks in the following.
5.3.1. The Number of NIB Nodes
Here, we verify the effectiveness of CrowdBox with different numbers of NIB nodes. In particular, the number of NIB nodes is changed from to with the increment of nodes, and the results are depicted in Figure 2.
(a) System utility
(b) Total participation level
(c) Average participation level
(d) The number of participating nodes
To be specific, Figure 2(a) shows that CrowdBox has the highest system utility contrasting with the other two algorithms, and this is our key goal to design CrowdBox which chooses the best response strategy to maximize the system utility. As it is expected, the total participation level of the best effort strategy is the highest as shown in Figure 2(b). The main reason here is that all NIB nodes try their best to do the task, but this is not a Nash equilibrium status in practice. Besides, CrowdBox is better than random strategy in the total participation level, and it is more obvious with the increase of the number of NIB nodes.
In terms of the average participation level depicted in Figure 2(c), both CrowdBox and best effort strategy reach a stable state. In contrast, the average participation level of random strategy varies as the number of NIB nodes increases, and this is mainly because the NIB nodes randomly choose how to cooperate (e.g., whether participate or not and how to participate). Similar to the result of system utility, the number of participating nodes for CrowdBox also achieves the highest with the number of NIB nodes increasing according to Figure 2(d). This is mainly because CrowdBox is a Nash equilibrium status and an NIB node will cooperate only if it can obtain profits from it. In addition, the random strategy is still the worst case among the three algorithms, and we notice it results from that it is not a Nash equilibrium status.
We can see that CrowdBox has the highest system utility and the number of participating nodes compared with the other two benchmarks. Although the participation level of the best effort strategy is higher than CrowdBox and the random strategy, it is difficult to reach since nodes are rational in practice. Thus, CrowdBox outperforms the other two strategies with the increase in the number of NIB nodes.
5.3.2. The Number of NIB Nodes’ Maximum Cost
Then, we evaluate all three strategies with different numbers of NIB nodes’ maximum cost. In particular, the maximum cost value varies from to with the increment of , and Figure 3 depicts the final results.
(a) System utility
(b) Total participation level
(c) Average participation level
(d) Performances with different numbers of NIB nodes
From the perspective of system utility (i.e., Figure 3(a)), CrowdBox still outperforms the other two strategies (i.e., random and best response strategy) since it is the Stackelberg Nash equilibrium status. Furthermore, the best effort strategy is better than the random strategy in system utility with different maximum costs, and this is mainly because those NIB nodes with best strategy effort are always doing their best to provide communication resources.
The participation levels (i.e., Figures 3(b) and 3(c)) of the three strategies show similar trends where the best strategy is the highest and the random strategy is the lowest in most cases. The number of participating NIB nodes depicted in Figure 3(d) concludes that CrowdBox also can stimulate more nodes to participate in providing extra communication resources under different maximum costs of NIB nodes, and this is also the main goal of this paper. Specifically, CrowdBox can reach a Stackelberg Nash equilibrium where all participating NIB nodes cannot obtain more extra profits if it derives from the current strategy.
Similar to the last simulation, we can get that although CrowdBox does not perform as well as the best effort strategy in the participation level (i.e., total and average), CrowdBox also has the highest system utility and number of participating nodes compared with the other two benchmarks with varying maximum costs of NIB nodes.
To summarize, CrowdBox can achieve the highest system utility and number of participating NIB nodes, the two key metrics of this paper, contrasting with the other two benchmarks under various settings based on the realistic simulation scenario. CrowdBox also performs better than random strategy in the other two metrics (i.e., total and average participation level), and the best effort strategy is not practiced since NIB nodes are usually rational (selfish).
6. Conclusion
The edge computingenabled Industrial Internet of Things (EIIoT) has aroused strong attentions recently since it creates a favorable communication environment to realize the concept of smart industry under the 6G scenario. In this paper, we propose CrowdBox, a crowdsourcingbased NIB node recruitment algorithm, leveraging the Stackelberg game theory, to improve the communication capacities with the power of crowds. CrowdBox shows the Nash equilibrium of the Stackelberg game and can choose the best response strategy for both EIIoT and NIB nodes. Finally, extensive evaluations are conducted to verify the performance of CrowdBox under different realistic simulation scenarios, and the result shows that CrowdBox outperforms the other two strategies.
Data Availability
No data were used to support this study.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was supported in part by the NSFCLiaoning Province United Foundation under Grant U1908214, the National Natural Science Foundation of China under Grants 61872052 and 62172069, the China Computer FederationTencent Open Fund under Grant IAGR20210116, the Fundamental Research Funds for the Central Universities under Grants DUT21TD107 and DUT20RC(3)039, the LiaoNing Revitalization Talents Program under Grant XLYC2008017, the Liaoning Key Research and Development Program under Grant 2019JH210100030, the Xinghai Scholar Program in Dalian University of Technology, the Natural Science Foundation of Liaoning Province under Grant No. 2019MS055, and the Youth Science and Technology Star of Dalian under Grant 2018RQ45.