Review Article

Adaptive Foot in Lower-Limb Prostheses

Table 4

Comparison of passive-adaptive foot prostheses/foot designs in lower-limb prostheses.

CountryName/year/reference numberWeightAxis of rotationType of mechanismMovable rangesAttaching methodMaterial

NetherlandsThe Heel Foot
(2003)
[8]
0.5 kgMediolateral axis MTP joint axisSpring based(−) 20° : 20°Knee ankle couplingToe-carbon fiber, forefoot, heel—aluminum

Netherlandsfully passive transfemoral prosthesis
(2011)
[9]
1.05 kgMediolateral axis at MTP jointSpring based and linkages0 : 30° (toe)Prosthesis ankle jointCarbon fiber

United States of America (USA)Prosthetic ankle-foot system
(2014)
[10]
1.04 kgMediolateral axisLinkages and camshafts87° : 105°Pyramid adapterNylon 6/6, polyurethane rubber, maraging steel

JapanBipedal walking robot with oblique midfoot joint in foot (2015)
[11]
N/AOblique axis at MTP jointTruss and windlass mechanismN/ANut and boltN/A

ItalySoftFoot
(2016)
[12]
N/AParallel to mediolateral axisSeries of rolling jointsvary with the surfaceCouplingRapid prototyping material

United States of America (USA)Hindfoot and forefoot stiff foot prostheses
(2017)
[13]
N/AMediolateral axisFlexible composite forefoot keel and hindfoot of varying stiffnesssagittal declination angle 15°Pyramid adapterAluminum 7075-T6

United States of America (USA)One-piece mechanically differentiated prosthetic foot (1997)
[14]
N/AMediolateral axisFlex due to polymeric materialN/AFlange type nut and bolt connectorLight weight polymeric material

United States of America (USA)Instrumented prosthetic foot
(2012)
[15]
N/AMediolateral axisFlex due to polymeric materialN/APyramid adapterDurometer polyurethane

United States of America (USA)Ankle-foot prosthesis of automatic adaptation (2014)
[16]
N/AMediolateral axisSpring and link based mechanism(−) 45° : 80°Pyramid adapterElastomeric Materials