Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2009 / Article

Open Access

Volume 6 |Article ID 276148 | 10 pages | https://doi.org/10.1080/11762320903180849

Forward Models Applied in Visual Servoing for a Reaching Task in the iCub Humanoid Robot

Received26 May 2009

Abstract

This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f.) and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

205 Views | 312 Downloads | 3 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.