Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2009 / Article

Open Access

Volume 6 |Article ID 378254 | 12 pages | https://doi.org/10.1080/11762320902959250

A Force-Feedback Exoskeleton for Upper-Limb Rehabilitation in Virtual Reality

Received01 Apr 2009

Abstract

This paper presents the design and the clinical validation of an upper-limb force-feedback exoskeleton, the L-EXOS, for robotic-assisted rehabilitation in virtual reality (VR). The L-EXOS is a five degrees of freedom exoskeleton with a wearable structure and anthropomorphic workspace that can cover the full range of motion of human arm. A specific VR application focused on the reaching task was developed and evaluated on a group of eight post-stroke patients, to assess the efficacy of the system for the rehabilitation of upper limb. The evaluation showed a significant reduction of the performance error in the reaching task (paired t-test, p < 0.02)

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

489 Views | 1385 Downloads | 77 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.