Applied Bionics and Biomechanics

Applied Bionics and Biomechanics / 2009 / Article

Open Access

Volume 6 |Article ID 878142 | 13 pages | https://doi.org/10.1080/11762320902789871

IKO: A Five Actuated DoF Upper Limb Exoskeleton Oriented to Workplace Assistance

Received06 Mar 2009

Abstract

IKerlan’s Orthosis (IKO) is an upper limb exoskeleton oriented to increasing human force during routine activity at the workplace. Therefore, it can be considered as a force-amplification device conceived to work in collaboration with the human arm and implementing biomimetic principles. The aim of the proposed design is to find the best compromise between maximum reachable workspace and minimum moving mass, which are the key factors for obtaining an ergonomic, wearable exoskeleton. It consists of five actuated degree of freedom (DoF) to move the human arm and three non-actuated DoF between the back and shoulder to allow relative displacement of the sterno-clavicular joint. Conventional electrical motors are used for most of the DoF and pneumatic muscles for one of them (forearm rotation). Power transmission is based on Bowden cables. This paper presents the IKO design, the mechanical structure of a first prototype and the redesign process from an aesthetic point of view. Controller set-up and control strategies are also shown, together with dynamic performance from experimental results.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

235 Views | 526 Downloads | 9 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.