Research Article  Open Access
Parametric Study on the Seismic Response of SteelFramed Buildings with SelfCentering TensionOnly Braces
Abstract
Selfcentering bracing systems, by which residual deformations of structures after earthquakes can be minimized, are considered effective solutions to achieve seismic resilience. In this paper, a parametric study on the seismic response of intermediate and highrise steelframed buildings with novel selfcentering tensiononly braces (SCTOBs) is numerically conducted. Three key parameters, the stiffness degradation factor, the activation strain, and the initial axial stiffness of the SCTOBs, are investigated to explore the design space for the SCTOB frames (SCTOBFs) because of their unique tunability compared with traditional bracing systems. Identical steel frames equipped with buckling restrained braces (BRBs) are also designed and examined for comparison purposes. The results indicate that increasing the stiffness degradation factor can improve the second stiffness of SCTOBFs and successfully make the distribution of interstory drifts more uniform; an increase in the activation strain leads to a larger activation deformation of SCTOBFs, but it has a very limited effect on the interstory drifts; increasing the initial axial stiffness appropriately is beneficial to reduce the interstory drifts of the low stories. The lateral behavior of SCTOBFs is comparable to that of BRB frames when a lower activation strain and a higher initial axial stiffness are selected. Furthermore, when a higher stiffness degradation factor and a lower initial axial stiffness are selected simultaneously, the seismic action on SCTOBFs can be effectively reduced, and a relatively uniform distribution over the building height can be obtained. The SCTOBFs are considered to be a type of performancetunable structure, and tuning can be achieved by varying a frame’s adjustable parameters.
1. Introduction
Controlling inelastic ductility to soften the seismic response and to dissipate the hysteretic energy is a basic concept for the seismic design of structures. However, inelastic ductility can also result in the concentration of damage in local parts of a structure and produce residual deformations (e.g., [1–3]), leading to undesirable influences on the resulting structure in terms of prohibitive costs of rehabilitation for structural and nonstructural components, interruption of building function, and a high collapse risk due to the Pdelta effects [4–8].
Braced frames are lateral resisting systems that have been commonly used in steel buildings for earthquake resistance. To reduce or eliminate residual deformations, Christopoulos et al. [9] proposed a selfcentering energy dissipative (SCED) brace, which provided a restoring force by pretensioned (PT) aramid fiberreinforced polymer (AFRP) elements and energy dissipation through a friction mechanism. Quasistatic and dynamic tests demonstrated that the SCED brace had satisfactory recentering and energy dissipation capacities, and its bracing system could selfcenter within the target design drift. To confirm the seismic performance of the SCED braces within structures, Erochko et al. [7] carried out a shake table test on a 3story steel frame braced with SCED braces and performed numerical simulations for comparison. To improve the recentering capability of selfcentering braces (SCBs), the enhanced elongation telescoping SCED (TSCED) brace and the dualcore SCB (DCSCB), both of which incorporate multiple selfcentering systems, were developed independently [10, 11]. A fullscale onestory onebay steel frame with DCSCBs was tested to examine its seismic performance, and the results showed that the initial axial stiffness of the DCSCB would decrease significantly from the influence of fabrication errors [12, 13].
Buckling restrained braces (BRBs), which have symmetric hysteretic behaviors and excellent energy dissipation capacity, have been widely used in recent years. However, this bracing system tends to induce large residual deformations after an earthquake [14, 15]. To address this drawback, Liu and Wu [16] proposed the selfcentering BRB (SCBRB) using PT steel strands to provide a restoring force. Chou et al. [17] proposed a dualcore selfcentering sandwiched BRB (SCSBRB) combing the selfcentering property of a DCSCB and the energy dissipation of a sandwiched BRB. Multiple cyclic tests demonstrated that the SCSBRB exhibited appreciable selfcentering, deformation, and energy dissipation capacities. Zhou et al. [18, 19] used basalt fiberreinforced polymer for the PT tendons and developed a dualtube SCBRB, which exhibited a good flagshaped hysteretic performance and selfcentering capacity. Xie et al. [20] improved the dualtube SCBRB configuration by adding a rubber cushion so as to reduce the negative influence of the fabrication error. Other feasible solutions for braces to achieve selfcentering, such as prepressed springs, and energy dissipation, such as magnetorheological fluid devices, can be found in the literature [21–23]. In addition, shape memory alloys (SMAs), characterized by superelasticity to recenter and dissipate energy on their own, have been employed to develop various types of SMAbased braces [24–26].
Unlike the abovementioned relatively rigid braces, tensiononly braces (TOBs) are flexible bracing members, which can enable the full use of highstrength materials without buckling under compression, leading to a mitigated seismic response of the braced structures due to a prolonged fundamental period. Thus, TOBs have many applications in buildings in areas of low seismicity [27–29]. However, because of their severe pinched hysteresis and inferior energy dissipation capacity, TOBs are prohibited as the sole lateral resistant system in areas of high seismicity [30, 31]. Regardless of these drawbacks, a lot of efforts have been made to expand the application of TOBs. For example, Mousavi and Zahrai [32] proposed a preslacked cable brace (PSCB), and their numerical study indicated that PSCBs could eliminate the strength degradation of the braced nonductile frame. Thereafter, Mousavi and Zahrai [33] proposed a slackfree connection (SFC), by which the pinching of the TOBs could be completely avoided and energy dissipation capacity was thereby significantly improved. Zahrai et al. [34] proposed a hybrid TOB (HTOB), which has a stable hysteresis with tunable postyield stiffness. Mehrabi et al. [35] proposed a TOB system with a precompressed spring, which enables both diagonal bracings to be constantly in tension. Experimental and analytical investigations validated the enhanced lateral performance of the cable braced frames in terms of strength and ductility.
In light of these studies, to take advantage of the seismic resilience of SCBs and the seismic mitigation of TOBs, a novel selfcentering TOB (SCTOB) has been developed and numerically verified by Chi et al. [36, 37]. To further investigate how the SCTOBs can be implemented in structures to improve seismic performance, a parametric study on the seismic response of 9 and 16story steelframed buildings, which can be considered typical of intermediate and highrise buildings, with SCTOBs is numerically conducted through pushover analysis. Three key parameters including the stiffness degradation factor, the activation strain, and the initial axial stiffness of the SCTOBs, are investigated thoroughly because of their unique characteristics and tunability compared with traditional bracing systems. Identical steel frames equipped with BRBs are also designed and examined for comparison purposes.
2. Configuration and Mechanics of the SCTOB
A schematic of the SCTOB [36, 37] showing its basic function is shown in Figure 1. The brace mainly consists of three parts: a highstrength steel (HSS) cable as a bracing element, a frictional device (FD) to dissipate seismic energy, and PT tendons to produce a full selfcentering hysteresis. One end of the PT tendons is anchored to the blocking plate, and the other end passes around the pulley and connects with the FD after a certain pretension is imposed.
The mechanics of the SCTOB can be explained using the analytical model presented in Figure 2: the PT tendons, FD, and HSS cable are idealized as springs with axial stiffnesses , , and , respectively, and the frictional resistance of the FD is F; the pretension of the PT tendons is . The blocking plate R is used to balance the pretension and restrict the left movement of the FD.
The hysteretic behavior of the SCTOB is illustrated in Figure 3. When the value of the lateral load P is less than the sum of the pretension force and the frictional resistance (i.e., ), only the HSS cable works (Stage oa), and the initial axial stiffness of the SCTOB is :where , , and are Young’s modulus, crosssectional area, and original length of the HSS cable, respectively.
As P increases to , the energy dissipative mechanism provided by FD is activated. Defining the load P at Event a as the activation load ,
At Stage ab, the stiffness of the SCTOB decreases significantly from to the postactivation stiffness, , given by
As the crosssectional area of the friction device is much greater than that of the cable and tendon, while the length of the friction device is much smaller than that of the cable and tendon, i.e., , equation (3) can be revised as
When unloading begins at Event b, the friction will first reduce gradually from F to zero and then increase in the opposite direction to −F at Event c. During this stage, only the HSS cable works, so the stiffness of the SCTOB is recovered to . As P further unloads (Stage cd), the SCTOB is capable of returning to its initial position by the sufficient restoring force produced by the PT tendons as long as is no less than . During this stage, the stiffness of the SCTOB is reduced again to the postactivation stiffness . With continued unloading, the tension force of the HSS cable decreases to zero after load removal and the stiffness of the SCTOB during Stage do is once again recovered to .
A structure incorporating the SCTOBs in a frame bay is described in Figure 4, in which the solid line indicates an active HSS cable and the dotted line indicates a loose one. The pulleys mounted on the beam near the beamcolumn connections, which are not part of an SCTOB, are used to guide the HSS cables.
3. Building Design and Modeling
3.1. Building Design
The 9 and 16story prototype buildings, which have an identical plan configuration and a constant story height of 3.9 m, are braced with BRBs or SCTOBs, as shown in Figure 5, in which both types of bracing elements are denoted by the dotted lines. Figure 6 illustrates the elevation view of the 9story SCTOB frames (SCTOBFs) and BRB frames (BRBFs), in which all the beams are pinned to the columns. The load information considered in this design is listed in Table 1.
(a)
(b)
(a)
(b)

In view of the symmetrical plan dimensions of the prototype buildings, the torsion effect is neglected and thereby the lateral force will be equally distributed to the corresponding braced frames, allowing for a 2D analysis to be performed in lieu of 3D analysis for efficiency and simplicity purposes. The modal analysis comparison results, as shown in Table 2, confirms that the 2D models will suffice for the following investigation.
 
MPMR: modal participating mass ratio. 
3.2. Simulation of SCTOB
The structural analysis program SAP2000 [38] is utilized for simulating the SCTOB. A multilinear elastic element (MEE) is used to model the PT tendons behavior, as shown in Figure 7(a). The forcedeformation relationship is nonlinear, but it is elastic. This means that the element loads and unloads along the same curve, and no energy is dissipated. The friction mechanism is modeled by using a multilinear plastic element (MPE), as shown in Figure 7(b). Note that for both elements, only the secondstage curves with a softened stiffness are valid to model the required behaviors of the PT tendons and FD, so a negligible firststage deformation has to be specified. The HSS cable could have been simulated using the linear elastic frame element (LEFE), but a severe numerical oscillation would occur when the MEE or MPE is connected directly with LEFE due to incompatibility between linear and nonlinear elements. Therefore, the MEEs with a sufficiently long firststage curve are also used herein for the cables to ensure that the cable would always work within this stage. The target hysteresis and integrated model of the SCTOB are shown in Figures 7(c) and 7(d), respectively.
(a)
(b)
(c)
(d)
The pulley is simulated using five hinged frame elements within the dotted circle, as shown in Figure 8, in which nodes 1, 2, and 3 are located around the center point O. Because the pulley is almost a rigid body in real structures, the axial stiffness of each frame element has to be specified sufficiently large. A “body constraint” is specified to node O and its vertical projection O’ on the beam to ensure that both the nodes would move together as a 3D rigid body.
The combination of all the elements associated with the SCTOB simulation is illustrated in Figure 9, in which C’ and D’ on the beam are the vertical projection of nodes C and D, respectively. Body constraints are also specified for C and C’, and D and D’, except that the translational degree of freedom of node C is released.
3.3. Simulation of BRB
The MPE with kinematic hysteresis is introduced to simulate the BRB behavior [38], as shown in Figure 10, in which , , , and are the yield capacity, yield deformation, axial stiffness, and postyield stiffness ratio of the steel core, respectively. In this paper, is taken as 3%. The design axial strength of the brace, , is determined under the frequently occurred earthquake (FOE) condition, and according tothe crosssectional area of the steel core, , can be calculated, where is the yield stress of the core. The yield capacity of the brace, , can be calculated bywhere is the overstrength factor of the core. The maximum axial strength of the brace, , can be calculated bywhere is the strainhardening adjustment factor.
3.4. Design Information of the Prototype Buildings
The criterion used for the SCTOBFs design is that all member force demands and the story drift must satisfy the design objectives under the design basis earthquake. With the increase of earthquake intensity, the seismic forces induced in the loadresisting elements such as beams, columns, and braces in the braced bays increase nonlinearly, whereas that in the unbraced bays remain nearly unchanged. Hence, different limits of “demandcapacity ratio” are specified: 0.5 and 0.8 for the elements in braced and unbraced frames, respectively, so as to ensure that all of them remain essentially elastic or achieve full selfcentering even under the most severe load condition in this analysis. The BRB components are designed according to the design codes [39–42]. The stepbystep design procedure of the SCTOB could be referred to the literature [37], and the ratio of and is set at 1.05 for all SCTOBs throughout this paper. The geometric and material properties of all the elements are listed in Tables 3–7. A strength check is performed through the structure after every pushover procedure, confirming that all the structural elements remain elastic without any damage in the analyses of the following section.





4. Parametric Study
4.1. Lateral Load Distribution
As illustrated in Figure 11, two lateral load distributions, the parabolic distribution (denoted as “LD1”) and the uniform distribution (denoted as “LD2”), are adopted as suggested in ASCE 710 [31]. These distributions can be expressed aswhere is the lateral load increment assigned to floor level , is the base shear increment of the structure, and are the building weights located on floor level and , respectively, and are the heights from the base to floor level and , respectively, is the total number of stories, for , for , and linear interpolation is used to select the values of between .
(a)
(b)
An incremental static procedure for both load distributions is performed until a target displacement, which is represented by the total drift angle of the prototype buildings, (as expressed in equation (10)), is exceeded:where is the horizontal displacement of the control node located at the center of mass of the roof and is the total height of the structure. In this paper, is taken as 2% corresponding to the limit prescribed by the building codes [41, 42].
4.2. Effects of Stiffness Degradation Factor r
The stiffness degradation factor, , as defined by the ratio of the postactivation stiffness to the initial axial stiffness of the SCTOB, is expressed as
If is too large, the seismic forces induced in the brace and adjacent structural members will increase rapidly, which is neither economical nor safe. But if is too small (e.g., 3% for BRB [43]), damage concentration would be induced at certain stories, thus limiting the capacity of the structure to redistribute the demand along the height. Furthermore, the Pdelta effects will also elevate the collapse risk. Hence, varying from 4% to 10% is investigated in this section.
4.2.1. Base Shear Response
The effects of on the base shear response of SCTOBFs with 9 and 16 stories are shown in Figures 12 and 13, respectively. With increasing from 4% to 10%, the second stiffness of the structure increases significantly, and the negative corresponding to is improved. The changes in have no effect on the first stiffness , the activation load , and the activation total drift angle of the structure. The SCTOBFs exhibit a smaller than BRBFs do, because SCTOBs can make full use of highstrength materials such that the seismic response of structures is mitigated because of a prolonged fundamental period. Besides, unlike BRBFs for which the stiffness degrades due to the yielding of the steel core, of SCTOBFs is determined by , which makes significantly lower than and plays a similar role in yielding or ductility. This provides a flexible design space for the SCTOBFs to achieve a required postactivation performance by varying .
(a)
(b)
(a)
(b)
4.2.2. Interstory Drift Response
The effects of on the interstory drift of SCTOBFs with 9 and 16 stories are shown in Figures 14 and 15, respectively. Basically, both SCTOBFs and BRBFs show the same tendency in terms of interstory drifts, decreasing from bottom to top. With the increase of , the interstory drifts of the lower part of the SCTOBFs decrease gradually while the drifts of the upper part increase, indicating that the distribution of drifts over the building could be improved by selecting a relatively large .
(a)
(b)
(a)
(b)
4.3. Effects of Activation Strain
The activation strain, , defined as the strain of the HSS cable when an SCTOB reaches its activation load , can be expressed aswhere is the activation deformation of the SCTOB corresponding to . Since determines the deformation state of the structure when the SCTOB starts to work, it permits designers to advance or delay the activation by specifying a suitable value accordingly. For BRBs, the activation strain depends on the yield strain of their steel core, which is made of Q160LY with yield strain of 0.07% in this paper.
4.3.1. Base Shear Response
The effects of on the base shear response of SCTOBFs with 9 and 16 stories are shown in Figures 16 and 17, respectively. With the increase of , the activation deformation and activation load of the structure increase gradually. However, the changes in have no effect on and of the structure. Due to the limitations of material property for the core, BRBFs have a constant . Compared with BRBFs, SCTOBFs can flexibly control the deformation state when the structures enter the postactivation stage by adjusting the value of .
(a)
(b)
(a)
(b)
4.3.2. Interstory Drift Response
The effects of on the interstory drifts of SCTOBFs with 9 and 16 stories are shown in Figures 18 and 19, respectively. For the SCTOBFs, the changes in have a very limited effect on the distribution of interstory drifts of each story. This is primarily because , governing the activation deformation state of the structure, is very small compared with the strain of the SCTOB at the end of analysis, such that it tends to display a negligible impact on the final interstory drift response.
(a)
(b)
(a)
(b)
4.4. Effects of Initial Axial Stiffness
To investigate the effects of on SCTOBFs, a stiffness amplification factor is introduced aswhere is the initial axial stiffness of a specific SCTOB selected from Tables 5 and 6 and is the amplified stiffness of the corresponding brace. Note that should remain constant in this section.
4.4.1. Base Shear Response
The effects of on the base shear response of SCTOBFs with 9 and 16 stories are shown in Figures 20 and 21, respectively. With increasing from 1.0 to 1.3, and increase continuously, while remain identical as designed. BRBFs have a larger than SCTOBFs, because BRBs tend to adopt lowyield steel for the brace core, resulting in larger cross sections.
(a)
(b)
(a)
(b)
4.4.2. Interstory Drift Response
The effects of on the interstory drifts of SCTOBFs with 9 and 16 stories are shown in Figures 22 and 23, respectively. Under the parabolic distribution of loads (LD1), the interstory drifts of low stories decrease as increases, but the effect on the middle and upper stories is not remarkable. Under the uniform distribution (LD2), the effect is negligible.
(a)
(b)
(a)
(b)
5. Discussion
From the results presented in Section 4, it can be found that the firststage lateral behavior of SCTOBFs, in terms of , , and , is jointly determined by and . This section deals with the coupling effects of these two parameters on SCTOBFs based on the premise that is set as constant as possible for each lateral load distribution with different building heights.
5.1. Base Shear Response
The coupling effects of and on the base shear response of SCTOBFs with 9 and 16 stories are shown in Figures 24 and 25, respectively. As the values of and increase and decrease, respectively, the firststage curves of the SCTOBFs are more and more close to that of the BRBFs, indicating that by selecting the appropriate and , SCTOBFs can exhibit a similar firststage performance as BRBFs.
(a)
(b)
(a)
(b)
5.2. Interstory Drift Response
The coupling effects of and on the interstory drifts of SCTOBFs with 9 and 16 stories are shown in Figures 26 and 27, respectively. As the values of and increase and decrease, respectively, the drifts of the low stories decrease gradually, while the drifts of high stories increase, similarly to the effects. Compared with BRBFs, SCTOBFs can achieve a comparable deformation performance by selecting the appropriate and .
(a)
(b)
(a)
(b)
6. Conclusions
A parametric study on the seismic response of 9 and 16story steelframed buildings, which can be considered typical of intermediate and highrise buildings, with SCTOBs is numerically conducted, and the results are compared with those of BRBFs. The effects of the stiffness degradation factor , the activation strain , and the initial axial stiffness of the SCTOBs on the lateral behavior of the SCTOBFs are investigated thoroughly to explore the design space. The following conclusions can be drawn from this study:(1)An increase in leads to a larger second stiffness of the structure, , but changes in have no significant effect on the activation load or the activation deformation , of the structure. A relatively large is suggested to improve the distribution of drifts over the building height.(2)With the increase in , and increase gradually, but has no effect on the first stiffness of the structure , and , and only a slight effect on the interstory drift distribution.(3)With the increase in , and increase continuously, and the interstory drifts of the lower part of the building under the parabolic distribution of loads are reduced.(4)The coupling effects of an increasing and a decreasing are similar to the effects. It is advantageous to select a large and a small simultaneously to make the drift distribution more uniform.(5)The SCTOBFs are considered to be a type of performancetunable structure, and tuning can be achieved by varying a frame’s adjustable parameters. The firststage lateral behavior of SCTOBFs is comparable to that of BRBFs when a lower and a higher are selected, and a required secondstage behavior can be obtained by specifying a suitable .
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Acknowledgments
This research was financially supported by the National Natural Science Foundation of China (Grants numbers 51708482 and 51578478), the China Postdoctoral Science Foundation (Grant number 2017M621593), and the Six Talent Peaks Project in Jiangsu Province (Grant number JZ035).
References
 E. Nastri, M. D’Aniello, M. Zimbru et al., “Seismic response of steel moment resisting frames equipped with friction beamtocolumn joints,” Soil Dynamics and Earthquake Engineering, vol. 119, pp. 144–157, 2019. View at: Publisher Site  Google Scholar
 V. Piluso, R. Montuori, E. Nastri, and A. Paciello, “Seismic response of MRFCBF dual systems equipped with low damage friction connections,” Journal of Constructional Steel Research, vol. 154, pp. 263–277, 2019. View at: Publisher Site  Google Scholar
 H. Wang, Y. Feng, J. Wu, Q. Jiang, and X. Chong, “Damage concentration effect of multistory bucklingrestrained braced frames,” Advances in Civil Engineering, vol. 2019, Article ID 7164373, 15 pages, 2019. View at: Publisher Site  Google Scholar
 E. Bojórquez, A. LópezBarraza, A. ReyesSalazar et al., “Improving the structural reliability of steel frames using posttensioned connections,” Advances in Civil Engineering, vol. 2019, Article ID 8912390, 10 pages, 2019. View at: Publisher Site  Google Scholar
 M. A. BravoHaro and A. Y. Elghazouli, “Permanent seismic drifts in steel moment frames,” Journal of Constructional Steel Research, vol. 148, pp. 589–610, 2018. View at: Publisher Site  Google Scholar
 D. Cardone and G. Gesualdi, “Influence of residual displacements on the design displacement of spherical frictionbased isolation systems,” Soil Dynamics and Earthquake Engineering, vol. 100, pp. 492–503, 2017. View at: Publisher Site  Google Scholar
 J. Erochko, C. Christopoulos, R. Tremblay, and H.J. Kim, “Shake table testing and numerical simulation of a selfcentering energy dissipative braced frame,” Earthquake Engineering & Structural Dynamics, vol. 42, no. 11, pp. 1617–1635, 2013. View at: Publisher Site  Google Scholar
 N. Chancellor, M. Eatherton, D. Roke, and T. Akbaş, “Selfcentering seismic lateral force resisting systems: high performance structures for the city of tomorrow,” Buildings, vol. 4, no. 3, pp. 520–548, 2014. View at: Publisher Site  Google Scholar
 C. Christopoulos, R. Tremblay, H.J. Kim, and M. Lacerte, “Selfcentering energy dissipative bracing system for the seismic resistance of structures: development and validation,” Journal of Structural Engineering, vol. 134, no. 1, pp. 96–107, 2008. View at: Publisher Site  Google Scholar
 J. Erochko, C. Christopoulos, and R. Tremblay, “Design and testing of an enhancedelongation telescoping selfcentering energydissipative brace,” Journal of Structural Engineering, vol. 141, no. 6, Article ID 04014163, 2015. View at: Publisher Site  Google Scholar
 C.C. Chou and Y. C. Chen, “Development and seismic performance of steel dualcore selfcentering braces,” in Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September 2012. View at: Google Scholar
 C.C. Chou, Y.C. Chen, D.H. Pham, and V.M. Truong, “Steel braced frames with dualcore SCBs and sandwiched BRBs: mechanics, modeling and seismic demands,” Engineering Structures, vol. 72, pp. 26–40, 2014. View at: Publisher Site  Google Scholar
 C.C. Chou, T.H. Wu, A. R. O. Beato, P.T. Chung, and Y.C. Chen, “Seismic design and tests of a fullscale onestory onebay steel frame with a dualcore selfcentering brace,” Engineering Structures, vol. 111, pp. 435–450, 2016. View at: Publisher Site  Google Scholar
 A. Watanabe, Y. Hitomi, E. Saeki, A. Wada, and M. Fujimoto, “Properties of brace encased in bucklingrestraining concrete and steel tube,” in Proceedings of the 9th World Conference on Earthquake Engineering, TokyoKyoto, Japan, August 1988. View at: Google Scholar
 K. L. Deng, P. Pan, X. G. Xu, P. Feng, and L. P. Ye, “Study of GFRP steel buckling restraint braces,” Journal of Composites for Construction, vol. 19, no. 6, Article ID 04015009, 2015. View at: Publisher Site  Google Scholar
 L. Liu and B. Wu, “Seismic response of steel frames with selfcentering bucklingrestrained braces,” Journal of Building Structures, vol. 37, no. 4, pp. 93–101, 2016, in Chinese. View at: Google Scholar
 C.C. Chou, W.J. Tsai, and P.T. Chung, “Development and validation tests of a dualcore selfcentering sandwiched bucklingrestrained brace (SCSBRB) for seismic resistance,” Engineering Structures, vol. 121, pp. 30–41, 2016. View at: Publisher Site  Google Scholar
 Z. Zhou, X. T. He, J. Wu, C. L. Wang, and S. P. Meng, “Development of a novel selfcentering bucklingrestrained brace with BFRP composite tendons,” Steel and Composite Structures, vol. 16, no. 5, pp. 491–506, 2014. View at: Publisher Site  Google Scholar
 Z. Zhou, Q. Xie, X. C. Lei, X. T. He, and S. P. Meng, “Experimental investigation of the hysteretic performance of dualtube selfcentering bucklingrestrained braces with composite tendons,” Journal of Composites for Construction, vol. 19, no. 6, Article ID 04015011, 2015. View at: Publisher Site  Google Scholar
 Q. Xie, Z. Zhou, J. Huang, D. P. Zhu, and S. P. Meng, “Finiteelement analysis of dualtube selfcentering bucklingrestrained braces with composite tendons,” Journal of Composites for Construction, vol. 21, no. 3, Article ID 04016112, 2017. View at: Publisher Site  Google Scholar
 L.H. Xu, X.W. Fan, and Z.X. Li, “Development and experimental verification of a prepressed spring selfcentering energy dissipation brace,” Engineering Structures, vol. 127, pp. 49–61, 2016. View at: Publisher Site  Google Scholar
 X. W. Fan and L. H. Xu, “Behaviors comparisons and prediction of prepressed spring selfcentering energy dissipation braces,” International Journal of Structural Stability and Dynamics, vol. 18, no. 8, Article ID 1840006, 2018. View at: Publisher Site  Google Scholar
 L.H. Xu, X.S. Xie, and Z.X. Li, “Development and experimental study of a selfcentering variable damping energy dissipation brace,” Engineering Structures, vol. 160, pp. 270–280, 2018. View at: Publisher Site  Google Scholar
 D. J. Miller, L. A. Fahnestock, and M. R. Eatherton, “Development and experimental validation of a nickeltitanium shape memory alloy selfcentering bucklingrestrained brace,” Engineering Structures, vol. 40, pp. 288–298, 2012. View at: Publisher Site  Google Scholar
 A. Kari, M. Ghassemieh, and B. Badarloo, “Development and design of a new selfcentering energydissipative brace for steel structures,” Journal of Intelligent Material Systems and Structures, vol. 30, no. 6, pp. 924–938, 2019. View at: Publisher Site  Google Scholar
 C. Qiu and S. Zhu, “Shake table test and numerical study of selfcentering steel frame with SMA braces,” Earthquake Engineering & Structural Dynamics, vol. 46, no. 1, pp. 117–137, 2017. View at: Publisher Site  Google Scholar
 Y. Chen, W. Wang, and Y. Chen, “Fullscale shake table tests of the tensiononly concentrically braced steel beamthrough frame,” Journal of Constructional Steel Research, vol. 148, pp. 611–626, 2018. View at: Publisher Site  Google Scholar
 G. A. Papagiannopoulos, “On the seismic behaviour of tensiononly concentrically braced steel structures,” Soil Dynamics and Earthquake Engineering, vol. 115, pp. 27–35, 2018. View at: Publisher Site  Google Scholar
 B. Tang, F. Zhang, Y. Wang, and F. Wang, “Effect of prestressed cable on prestressed megabraced steel frame,” Structural Engineering and Mechanics, vol. 59, no. 2, pp. 327–341, 2016. View at: Publisher Site  Google Scholar
 European Committee for Standardization, Eurocode 8: Design of Structures for Earthquake Resistance, European Committee for Standardization, Brussels, Belgium, 2005.
 ASCE 710, Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA, 2010.
 S. A. Mousavi and S. M. Zahrai, “Contribution of preslacked cable braces to dynamic stability of nonductile frames; an analytical study,” Engineering Structures, vol. 117, pp. 305–320, 2016. View at: Publisher Site  Google Scholar
 S. A. Mousavi and S. M. Zahrai, “Slack free connections to improve seismic behavior of tensiononly braces: an experimental and analytical study,” Engineering Structures, vol. 136, pp. 54–67, 2017. View at: Publisher Site  Google Scholar
 S. M. Zahrai, S. A. Mousavi, and M. Saatcioglu, “Analytical study on seismic behavior of proposed hybrid tensiononly braced frames,” The Structural Design of Tall Special Buildings, vol. 26, no. 3, p. e1310, 2017. View at: Publisher Site  Google Scholar
 M. H. Mehrabi, Z. Ibrahim, S. S. Ghodsi, and M. Suhatril, “Seismic characteristics of xcable braced frames bundled with a precompressed spring,” Soil Dynamics and Earthquake Engineering, vol. 116, pp. 732–746, 2019. View at: Publisher Site  Google Scholar
 P. Chi, J. Dong, Y. Peng, and J. Y. R. Liew, “Theoretical and numerical study on an innovative selfcentering energydissipative tensionbrace system,” Journal of Vibration and Shock, vol. 35, no. 21, pp. 171–176, 2016, in Chinese. View at: Google Scholar
 P. Chi, T. Guo, Y. Peng, D. F. Cao, and J. Dong, “Development of a selfcentering tensiononly brace for seismic protection of frame structures,” Steel and Composite Structures, vol. 26, no. 5, pp. 573–582, 2018. View at: Google Scholar
 SAP2000, Structural Analysis Program, Version 17.3.0, Computers and Structures, Inc., Berkeley, CA, USA, 2015.
 FEMA 450, NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures: Part 1Provisions and Part 2Commentary, Building Safety Seismic Council, Washington, DC, USA, 2003.
 JGJ 992015, Technical Specification for Steel Structure of Tall Building, Ministry of Housing and UrbanRural Development of China, Beijing, China, 2015.
 GB 500112010, Code for Seismic Design of Buildings, Ministry of Housing and UrbanRural Development of China, Beijing, China, 2010.
 AISC 34116, Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA, 2016.
 S. Kiggins and C.M. Uang, “Reducing residual drift of bucklingrestrained braced frames as a dual system,” Engineering Structures, vol. 28, no. 11, pp. 1525–1532, 2006. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2019 Pei Chi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.