Table of Contents Author Guidelines Submit a Manuscript
Advances in Condensed Matter Physics
Volume 2012 (2012), Article ID 168313, 7 pages
http://dx.doi.org/10.1155/2012/168313
Research Article

Heterostructures for Realizing Magnon-Induced Spin Transfer Torque

1Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
2Department of Physics, University of Texas at Austin, 1 University Station C1600, Austin, TX 78712, USA

Received 17 February 2012; Accepted 21 April 2012

Academic Editor: Giancarlo Consolo

Copyright © 2012 P. B. Jayathilaka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Physical Review B, vol. 54, no. 13, pp. 9353–9358, 1996. View at Google Scholar · View at Scopus
  2. J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” Journal of Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1–L7, 1996. View at Google Scholar · View at Scopus
  3. M. Tsoi, A. G. M. Jansen, J. Bass et al., “Excitation of a magnetic multilayer by an electric current,” Physical Review Letters, vol. 80, no. 19, pp. 4281–4284, 1998. View at Google Scholar · View at Scopus
  4. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science, vol. 285, no. 5429, pp. 867–870, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars,” Physical Review Letters, vol. 84, no. 14, pp. 3149–3152, 2000. View at Google Scholar · View at Scopus
  6. J. Åkerman, “Toward a universal memory,” Science, vol. 308, no. 5721, pp. 508–510, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. I. Klselev, J. C. Sankey, I. N. Krivorotov et al., “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature, vol. 425, no. 6956, pp. 380–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. I. N. Krivorotov, N. C. Emley, J. C. Sankey, S. I. Kiselev, D. C. Ralph, and R. A. Buhrman, “Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques,” Science, vol. 307, no. 5707, pp. 228–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. C. Ralph and M. D. Stiles, “Spin transfer torques,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 7, pp. 1190–1216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Slonczewski, “Initiation of spin-transfer torque by thermal transport from magnons,” Physical Review B, vol. 82, no. 5, Article ID 054403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, “Thermal spin-transfer torque in magnetoelectronic devices,” Physical Review Letters, vol. 99, no. 6, Article ID 066603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. E. Wegrowe, “Spin transfer from the point of view of the ferromagnetic degrees of freedom,” Solid State Communications, vol. 150, no. 11-12, pp. 519–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. V. Nazarov, H. M. Olson, H. Cho et al., “Spin transfer stimulated microwave emission in MgO magnetic tunnel junctions,” Applied Physics Letters, vol. 88, no. 16, Article ID 162504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Deac, A. Fukushima, H. Kubota et al., “Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices,” Nature Physics, vol. 4, no. 10, pp. 803–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Houssameddine, S. H. Florez, J. A. Katine et al., “Spin transfer induced coherent microwave emission with large power from nanoscale MgO tunnel junctions,” Applied Physics Letters, vol. 93, no. 2, Article ID 022505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. G. Chapline and S. X. Wang, “Observation of the Verwey transition in thin magnetite films,” Journal of Applied Physics, vol. 97, no. 12, Article ID 123901, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. P. B. Jayathilaka, C. A. Bauer, D. V. Williams, M. C. Monti, J. T. Markert, and C. W. Miller, “Impact of ultrathin transition metal buffer layers on Fe3O4 thin films,” Journal of Applied Physics, vol. 107, no. 9, Article ID 09B101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. K. H. Lee, P. B. Jayathilaka, C. A. Bauer et al., “Magnetic force microscopy of epitaxial magnetite films through the Verwey transition,” Applied Physics Letters, vol. 97, no. 16, Article ID 162502, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Moloni, B. M. Moskowitz, and E. Dan Dahlberg, “Domain structures in single crystal magnetite below the Verwey transition as observed with a low-temperature magnetic force microscope,” Geophysical Research Letters, vol. 23, no. 20, pp. 2851–2854, 1996. View at Google Scholar · View at Scopus
  20. J. Bass and W. P. Pratt Jr., “Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review,” Journal of Physics Condensed Matter, vol. 19, no. 18, Article ID 183201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. P. B. Jayathilaka, C. A. Bauer, D. V. Williams, and C. W. Miller, “Influence of growth field on NiFe, Fe3O4, and NiFe/Cr/Fe3O4 spin-valves,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1777–1779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. van Dijken, X. Fain, S. M. Watts, K. Nakajima, and J. M. D. Coey, “Magnetoresistance of Fe3O4/Au/Fe3O4 and Fe3O4/Au/Fe spin-valve structures,” Journal of Magnetism and Magnetic Materials, vol. 280, no. 2-3, pp. 322–326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. N. Baibich, J. M. Broto, A. Fert et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Physical Review Letters, vol. 61, no. 21, pp. 2472–2475, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Tripathy, A. O. Adeyeye, and S. Shannigrahi, “Effect of spacer layer thickness on the magnetic and magnetotransport properties of Fe3O4/Cu/Ni80/Fe20 spin valve structures,” Physical Review B, vol. 75, no. 1, Article ID 012403, 2007. View at Publisher · View at Google Scholar · View at Scopus