Analytical Cellular Pathology

Analytical Cellular Pathology / 2012 / Article
Special Issue

1st Congress of the International Academy of Digital Pathology Quebec City, Canada, August 3–5, 2011. Part I

View this Special Issue

Open Access

Volume 35 |Article ID 535819 | 10 pages |

Optimization of Complex Cancer Morphology Detection Using the SIVQ Pattern Recognition Algorithm


For personalization of medicine, increasingly clinical and demographic data are integrated into nomograms for prognostic use, while molecular biomarkers are being developed to add independent diagnostic, prognostic, or management information. In a number of cases in surgical pathology, morphometric quantitation is already performed manually or semi-quantitatively, with this effort contributing to diagnostic workup. Digital whole slide imaging, coupled with emerging image analysis algorithms, offers great promise as an adjunctive tool for the surgical pathologist in areas of screening, quality assurance, consistency, and quantitation. We have recently reported such an algorithm, SIVQ (Spatially Invariant Vector Quantization), which avails itself of the geometric advantages of ring vectors for pattern matching, and have proposed a number of potential applications. One key test, however, remains the need for demonstration and optimization of SIVQ for discrimination between foreground (neoplasm- malignant epithelium) and background (normal parenchyma, stroma, vessels, inflammatory cells). Especially important is the determination of relative contributions of each key SIVQ matching parameter with respect to the algorithm’s overall detection performance. Herein, by combinatorial testing of SIVQ ring size, sub-ring number, and inter-ring wobble parameters, in the setting of a morphologically complex bladder cancer use case, we ascertain the relative contributions of each of these parameters towards overall detection optimization using urothelial carcinoma as a use case, providing an exemplar by which this algorithm and future histology-oriented pattern matching tools may be validated and subsequently, implemented broadly in other appropriate microscopic classification settings.

Copyright © 2012 Hindawi Publishing Corporation and the authors. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

454 Views | 295 Downloads | 11 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.