Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2011, Article ID 485752, 8 pages
http://dx.doi.org/10.4061/2011/485752
Research Article

Effects of IFN-B on TRAIL and Decoy Receptor Expression in Different Immune Cell Populations from MS Patients with Distinct Disease Subtypes

1Department of Pharmacology, Dalhousie University, Halifax, NS, Canada B3H 1X5
2Department of Neurology, Dalhousie University, Halifax, NS, Canada B3H 1V7
3Department of Psychiatry, Dalhousie University, Halifax, NS, Canada B3H 2E2

Received 23 August 2010; Accepted 16 November 2010

Academic Editor: David Dyment

Copyright © 2011 Andrea L. O. Hebb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Lassmann, “Axonal injury in multiple sclerosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 6, pp. 695–697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Neumann, “Molecular mechanisms of axonal damage in inflammatory central nervous system diseases,” Current Opinion in Neurology, vol. 16, no. 3, pp. 267–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, “Multiple sclerosis,” The New England Journal of Medicine, vol. 343, no. 13, pp. 938–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Traugott, E. L. Reinherz, and C. S. Raine, “Multiple sclerosis: distribution of T cell subsets within active chronic lesions,” Science, vol. 219, no. 4582, pp. 308–310, 1983. View at Google Scholar · View at Scopus
  5. C. Vizler, N. Bercovici, A. Cornet, C. Cambouris, and R. S. Liblau, “Role of autoreactive CD8+ T cells in organ-specific autoimmune diseases: insight from transgenic mouse models,” Immunological Reviews, vol. 169, pp. 81–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. I. Satoh, M. Nakanishi, F. Koike et al., “Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis,” Neurobiology of Disease, vol. 18, no. 3, pp. 537–550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Wendling, H. Walczak, J. Dörr et al., “Expression of TRAIL receptors in human autoreactive and foreign antigen-specific T cells,” Cell Death and Differentiation, vol. 7, no. 7, pp. 637–644, 2000. View at Google Scholar · View at Scopus
  8. M. Todaro, A. Zeuner, and G. Stassi, “Role of apoptosis in autoimmunity,” Journal of Clinical Immunology, vol. 24, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. C. Fas, B. Fritzsching, E. Suri-Payer, and P. H. Krammer, “Death receptor signaling and its function in the immune system,” Current Directions in Autoimmunity, vol. 9, pp. 1–17, 2006. View at Google Scholar · View at Scopus
  10. E. N. Benveniste, “Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis,” Journal of Molecular Medicine, vol. 75, no. 3, pp. 165–173, 1997. View at Publisher · View at Google Scholar
  11. H. Wekerle, “Remembering MOG: autoantibody mediated demyelination in multiple sclerosis?” Nature Medicine, vol. 5, no. 2, pp. 153–154, 1999. View at Publisher · View at Google Scholar
  12. K. C. Williams, E. Ulvestad, and W. F. Hickey, “Immunology of multiple sclerosis,” Clinical Neuroscience, vol. 2, no. 3-4, pp. 229–245, 1994. View at Google Scholar · View at Scopus
  13. S. M. Agrawal and V. W. Yong, “Immunopathogenesis of multiple sclerosis,” International Review of Neurobiology, vol. 79, pp. 99–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Hauser, E. Waubant, D. L. Arnold et al., “B-cell depletion with rituximab in relapsing-remitting multiple sclerosis,” The New England Journal of Medicine, vol. 358, no. 7, pp. 676–688, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Marsters, R. A. Pitti, J. P. Sheridan, and A. Ashkenazi, “Control of apoptosis signaling by Apo2 ligand,” Recent Progress in Hormone Research, vol. 54, pp. 225–234, 1999. View at Google Scholar · View at Scopus
  16. O. Aktas, A. Smorodchenko, S. Brocke et al., “Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL,” Neuron, vol. 46, no. 3, pp. 421–432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Aktas, U. Schulze-Topphoff, and F. Zipp, “The role of TRAIL/TRAIL receptors in central nervous system pathology,” Frontiers in Bioscience, vol. 12, pp. 2912–2921, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Aktas, S. Waiczies, and F. Zipp, “Neurodegeneration in autoimmune demyelination: recent mechanistic insights reveal novel therapeutic targets,” Journal of Neuroimmunology, vol. 184, no. 1-2, pp. 17–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Aktas, T. Prozorovski, and F. Zipp, “Death ligands and autoimmune demyelination,” Neuroscientist, vol. 12, no. 4, pp. 305–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Vosoughi and M. S. Freedman, “Therapy of MS,” Clinical Neurology and Neurosurgery, vol. 112, no. 5, pp. 365–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. P. Wandinger, J. D. Lünemann, O. Wengert et al., “TNF-related apoptosis inducing ligand (TRAIL) as a potential response marker for interferon-beta treatment in multiple sclerosis,” The Lancet, vol. 361, no. 9374, pp. 2036–2043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Dhib-Jalbut and S. Marks, “Interferon-β mechanisms of action in multiple sclerosis,” Neurology, vol. 74, pp. S17–S24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Cretney, J. L. McQualter, N. Kayagaki et al., “TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice,” Immunology and Cell Biology, vol. 83, no. 5, pp. 511–519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Arbour, E. Rastikerdar, E. McCrea et al., “Upregulation of TRAIL expression on human T lymphocytes by interferon β and glatiramer acetate,” Multiple Sclerosis, vol. 11, no. 6, pp. 652–657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. M. Huang, Y. Hussien, Y. P. Jin, M. Söderstrom, and H. Link, “Multiple sclerosis: deficient in vitro responses of blood mononuclear cells to IFN-β,” Acta Neurologica Scandinavica, vol. 104, no. 5, pp. 249–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. Goodin, L. D. Biermann, S. Bohlega et al., “Integrating an evidence-based assessment of benefit and risk in disease-modifying treatment of multiple sclerosis,” Current Medical Research and Opinion, vol. 23, no. 11, pp. 2823–2832, 2007. View at Publisher · View at Google Scholar
  27. O. Neuhaus, J. J. Archelos, and H. P. Hartung, “Immunomodulation in multiple sclerosis: from immunosuppression to neuroprotection,” Trends in Pharmacological Sciences, vol. 24, no. 3, pp. 131–138, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. V. W. Yong, “Differential mechanisms of action of interferon-β and glatiramer acetate in MS,” Neurology, vol. 59, no. 6, pp. 802–808, 2002. View at Google Scholar · View at Scopus
  29. A. L. O. Hebb, C. S. Moore, V. Bhan et al., “Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination,” Multiple Sclerosis, vol. 14, no. 5, pp. 577–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Karacay, S. Sanlioglu, T. S. Griffith, A. Sandler, and D. J. Bonthius, “Inhibition of the NF-κB pathway enhances TRAIL-mediated apoptosis in neuroblastoma cells,” Cancer Gene Therapy, vol. 11, no. 10, pp. 681–690, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Neu, R. Rad, W. Reindl et al., “Expression of tumor necrosis factor-α-related apoptosis-inducing ligand and its proapoptotic receptors is down-regulated during gastric infection with virulent cagA+/vacAs1+ Helicobacter pylori strains,” Journal of Infectious Diseases, vol. 191, no. 4, pp. 571–578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. Sanlioglu, E. Dirice, C. Aydin, N. Erin, S. Koksoy, and S. Sanlioglu, “Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells,” BMC Cancer, vol. 5, article 54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2T method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Buttmann, C. Merzyn, H. H. Hofstetter, and P. Rieckmann, “TRAIL, CXCL10 and CCL2 plasma levels during long-term Interferon-β treatment of patients with multiple sclerosis correlate with flu-like adverse effects but do not predict therapeutic response,” Journal of Neuroimmunology, vol. 190, no. 1-2, pp. 170–176, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Mérino, N. Lalaoui, A. Morizot, P. Schneider, E. Solary, and O. Micheau, “Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2,” Molecular and Cellular Biology, vol. 26, no. 19, pp. 7046–7055, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. U. Wendling, H. Walczak, J. Dörr et al., “Expression of TRAIL receptors in human autoreactive and foreign antigen-specific T cells,” Cell Death and Differentiation, vol. 7, no. 7, pp. 637–644, 2000. View at Google Scholar · View at Scopus