Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2014, Article ID 325461, 12 pages
http://dx.doi.org/10.1155/2014/325461
Research Article

Mercury, Autoimmunity, and Environmental Factors on Cheyenne River Sioux Tribal Lands

1College of Pharmacy, Community Environmental Health Program, University of New Mexico Health Sciences Center, 905 Vassar NE, Albuquerque, NM 87106, USA
2School of Medicine, University of New Mexico Health Sciences Center, 1 University of New Mexico, Albuquerque, NM 87131, USA
3Department of Natural Resources, Cheyenne River Sioux Tribe, P.O. Box 590, East Highway 212, Eagle Butte, SD 57625, USA
4Missouri Breaks Industries Research, Inc., Hc 64 Box 52, Timber Lake, SD 57656, USA
5INOVA Diagnostics, Inc., 9900 Old Grove Road, San Diego, CA 92131, USA
6Black Hills Center for American Indian Health, 701 St. Joseph Street, Suite 204, Rapid City, SD 57701, USA
7Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

Received 7 November 2013; Accepted 17 February 2014; Published 24 April 2014

Academic Editor: Aristo Vojdani

Copyright © 2014 Jennifer Ong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Kirkemo, W. L. Newman, and R. P. Ashley, Gold, U.S. Geological Survey, Denver, Colo, USA, 2001.
  2. S. Vinyard and R. Lauren, “Dirty Energy’s Assault on Our Health: Mercury,” 2011.
  3. G. C. Bryner, “Coalbed methane development: the costs and benefits of an emerging energy resource,” Natural Resources Journal, vol. 43, no. 2, pp. 519–560, 2003. View at Google Scholar · View at Scopus
  4. T. W. May, R. H. Wiedmeyer, J. Gober, and S. Larson, “Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota,” Archives of Environmental Contamination and Toxicology, vol. 40, no. 1, pp. 1–9, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. BigEagle, “Development processes of consumption advisories for the Cheyenne River Sioux Indian Reservation,” in Proceedings of the National Forum on Contaminants in Fish, pp. 142–144, Baltimore, Md, USA, 2005.
  6. J. M. Johnston, D. Hoff, R. Hoogerheide, R. Edgar, D. Wall, and C. Ducheneaux, Mercury Risk Management in Livestock Ponds on the Cheyenne River Sioux Reservation, Science Forum, Washington, DC, USA, 2003.
  7. A. T. Byrne, “Fish Consumption Survey for the Cheyenne River Basin within the Cheyenne River Indian Reservation, South Dakota,” Eagle Butte, SD, USA, 2002.
  8. U.S. Census Bureau, “Distribution of Income by Family and Household,” 2000.
  9. U.S. Department of Health & Human Services, “Poverty Guidelines, Research, and Measurement n.d.”.
  10. United States Department of the Interior Bureau of Indian Affairs Office of Indian Services, “2005 American Indian Population and Labor Force Report,” 2005.
  11. M. Satoh, E. K. L. Chan, L. A. Ho et al., “Prevalence and sociodemographic correlates of antinuclear antibodies in the United States,” Arthritis & Rheumatism, vol. 64, no. 7, pp. 2319–2327, 2012. View at Publisher · View at Google Scholar
  12. C. M. Gallagher, A. E. McElroy, D. M. Smith, M. G. Golightly, and J. R. Meliker, “Polychlorinated biphenyls, mercury, and antinuclear antibody positivity, NHANES 2003-2004,” International Journal of Hygiene and Environmental Health, vol. 216, no. 6, pp. 721–727, 2013. View at Publisher · View at Google Scholar
  13. M. S. Leffell, M. D. Fallin, W. H. Hildebrand, J. W. Cavett, B. A. Iglehart, and A. A. Zachary, “HLA alleles and haplotypes among the lakota sioux: report of the ASHI minority workshops, part III,” Human Immunology, vol. 65, no. 1, pp. 78–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Williams, L. T. H. Jacobsson, W. C. Knowler et al., “Meta-analysis reveals association between most common class II haplotype in full-heritage native Americans and rheumatoid arthritis,” Human Immunology, vol. 42, no. 1, pp. 90–94, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Heward and S. C. Gough, “Genetic susceptibility to the development of autoimmune disease,” Clinical Science, vol. 93, no. 6, pp. 479–491, 1997. View at Google Scholar · View at Scopus
  16. K. M. Pollard, P. Hultman, and D. H. Kono, “Immunology and genetics of induced systemic autoimmunity,” Autoimmunity Reviews, vol. 4, no. 5, pp. 282–288, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Germolec, D. H. Kono, J. C. Pfau, and K. M. Pollard, “Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop,” Journal of Autoimmunity, vol. 39, no. 4, pp. 285–293, 2012. View at Publisher · View at Google Scholar
  18. S. Havarinasab and P. Hultman, “Alteration of the spontaneous systemic autoimmune disease in (NZB×NZW)F1 mice by treatment with thimerosal (ethyl mercury),” Toxicology and Applied Pharmacology, vol. 214, no. 1, pp. 43–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Hultman, A. Taylor, J. M. Yang, and K. M. Pollard, “The effect of xenobiotic exposure on spontaneous autoimmunity in (SWR×SJL)F1 hybrid mice,” Journal of Toxicology and Environmental Health A, vol. 69, no. 6, pp. 505–523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. M. Pollard, D. L. Pearson, P. Hultman, T. N. Deane, U. Lindh, and D. H. Kono, “Xenobiotic acceleration of idiopathic systematic autoimmunity in lupus-prone BXSB mice,” Environmental Health Perspectives, vol. 109, no. 1, pp. 27–33, 2001. View at Google Scholar · View at Scopus
  21. K. M. Pollard, D. L. Pearson, P. Hultman, B. Hildebrandt, and D. H. Kono, “Lupus-prone mice as models to study xenobiotic-induced acceleration of systemic autoimmunity,” Environmental Health Perspectives, vol. 107, supplement 5, pp. 729–735, 1999. View at Google Scholar · View at Scopus
  22. D. Fairweather, S. Frisancho-Kiss, and N. R. Rose, “Sex differences in autoimmune disease from a pathological perspective,” The American Journal of Pathology, vol. 173, no. 3, pp. 600–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Nielsen and P. Hultman, “Mercury-induced autoimmunity in mice,” Environmental Health Perspectives, vol. 110, no. 5, pp. 877–881, 2002. View at Google Scholar · View at Scopus
  24. K. M. Pollard, “Gender differences in autoimmunity associated with exposure to environmental factors,” Journal of Autoimmunity, vol. 38, no. 2-3, pp. J177–J186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. K. K. Aminzadeh and M. Etminan, “Dental amalgam and multiple sclerosis: a systematic review and meta-analysis,” Journal of Public Health Dentistry, vol. 67, no. 1, pp. 64–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. N. Bates, J. Fawcett, N. Garrett, T. Cutress, and T. Kjellstrom, “Health effects of dental amalgam exposure: a retrospective cohort study,” International Journal of Epidemiology, vol. 33, no. 4, pp. 894–902, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. F. Nyland, M. Fillion, F. Barbosa Jr. et al., “Biomarkers of methylmercury exposure immunotoxicity among fish consumers in amazonian Brazil,” Environmental Health Perspectives, vol. 119, no. 12, pp. 1733–1738, 2011. View at Google Scholar · View at Scopus
  28. R. M. Gardner, J. F. Nyland, I. A. Silva, A. M. Ventura, J. M. de Souza, and E. K. Silbergeld, “Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study,” Environmental Research, vol. 110, no. 4, pp. 345–354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. E. K. Silbergeld, I. A. Silva, and J. F. Nyland, “Mercury and autoimmunity: implications for occupational and environmental health,” Toxicology and Applied Pharmacology, vol. 207, no. 2, supplement, pp. 282–292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. A. Silva, J. F. Nyland, A. Gorman et al., “Mercury exposure, malaria, and serum antinuclear/antinucleolar antibodies in amazon populations in Brazil: a cross-sectional study,” Environmental Health: A Global Access Science Source, vol. 3, article 11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. R. M. Gardner, J. F. Nyland, and E. K. Silbergeld, “Differential immunotoxic effects of inorganic and organic mercury species in vitro,” Toxicology Letters, vol. 198, no. 2, pp. 182–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. M. Gardner, J. F. Nyland, S. L. Evans et al., “Mercury induces an unopposed inflammatory response in human peripheral blood mononuclear cells in vitro,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1932–1938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. N. Henderson, S. Kanekar, Y. Wen et al., “Patterns of cigarette smoking initiation in two culturally distinct American Indian tribes,” American Journal of Public Health, vol. 99, no. 11, pp. 2020–2025, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Pragst and S. Leo, “Smoking trials with mercury contaminated cigarettes: studies of attempted poisoning,” Archiv für Kriminologie, vol. 188, no. 3-4, pp. 77–86, 1991. View at Google Scholar · View at Scopus
  35. M. R. Fresquez, R. S. Pappas, and C. H. Watson, “Establishment of toxic metal reference range in tobacco from US cigarettes,” Journal of Analytical Toxicology, vol. 37, no. 5, pp. 298–304, 2013. View at Publisher · View at Google Scholar
  36. J. S. Smolen, B. Butcher, M. J. Fritzler et al., “Reference sera for antinuclear antibodies: II. Further definition of antibody specificities in international antinuclear antibody reference sera by immunofluorescence and western blotting,” Arthritis & Rheumatism, vol. 40, no. 3, pp. 413–418, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. United States Environmental Protection Agency, “Consumption Advice: Joint Federal Advisory for Mercury in Fish n.d.”.
  38. A. S. Andrew, D. A. Jewell, R. A. Mason, M. L. Whitfield, J. H. Moore, and M. R. Karagas, “Drinking-water arsenic exposure modulates gene expression in human lymphocytes from a U.S. population,” Environmental Health Perspectives, vol. 116, no. 4, pp. 524–531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Biswas, P. Ghosh, N. Banerjee et al., “Analysis of T-cell proliferation and cytokine secretion in the individuals exposed to arsenic,” Human and Experimental Toxicology, vol. 27, no. 5, pp. 381–386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J.-M. Yang, B. Hildebrandt, C. Luderschmidt, and K. M. Pollard, “Human scleroderma sera contain autoantibodies to protein components specific to the U3 small nucleolar RNP complex,” Arthritis & Rheumatism, vol. 48, no. 1, pp. 210–217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. E. M. Tan, T. E. W. Feltkamp, J. S. Smolen et al., “Range of antinuclear antibodies in “healthy” individuals,” Arthritis & Rheumatism, vol. 40, no. 9, pp. 1601–1611, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. R. L. Rubin, “Drug-induced lupus,” Toxicology, vol. 209, no. 2, pp. 135–147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. R. W. Burlingame and R. L. Rubin, “Subnucleosome structures as substrates in enzyme-linked immunosorbent assays,” Journal of Immunological Methods, vol. 134, no. 2, pp. 187–199, 1990. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Schett, J. Smolen, C. Zimmermann et al., “The autoimmune response to chromatin antigens in systemic lupus erythematosus: autoantibodies against histone H1 are a highly specific marker for SLE associated with increased disease activity,” Lupus, vol. 11, no. 11, pp. 704–715, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.
  46. B. D. Ripley, B. Venables, D. M. Bates, K. Hornik, A. Gebhardt, and D. Firth, “Support Functions and Datasets for Venables and Ripley’s MASS,” 2013.
  47. Centers for Disease Control, “Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables, September 2013,” 2013.
  48. A. Wolkin, D. Hunt, C. Martin, K. L. Caldwell, and M. A. McGeehin, “Blood mercury levels among fish consumers residing in areas with high environmental burden,” Chemosphere, vol. 86, no. 9, pp. 967–971, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Martin, A. Wolkin, C. Ducheneaux, J. Lewis, and J. Henderson, Blood Mercury (Hg) Levels Among Consumers of Locally Caught Fish Residing on the Cheyenne River Sioux Tribe (CRST) Reservation, American Public Health Association, 2009.
  50. K. L. Caldwell, M. E. Mortensen, R. L. Jones, S. P. Caudill, and J. D. Osterloh, “Total blood mercury concentrations in the U.S. population: 1999–2006,” International Journal of Hygiene and Environmental Health, vol. 212, no. 6, pp. 588–598, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. J. Hurlburt, B. J. McMahon, H. Deubner, B. Hsu-Trawinski, J. L. Williams, and K. V. Kowdley, “Prevalence of autoimmune liver disease in Alaska natives,” The American Journal of Gastroenterology, vol. 97, no. 9, pp. 2402–2407, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Israeli, N. Agmon-Levin, M. Blank, and Y. Shoenfeld, “Adjuvants and autoimmunity,” Lupus, vol. 18, no. 13, pp. 1217–1225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. O. Barzilai, M. Ram, and Y. Shoenfeld, “Viral infection can induce the production of autoantibodies,” Current Opinion in Rheumatology, vol. 19, no. 6, pp. 636–643, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Murali-Krishna, J. D. Altman, M. Suresh et al., “Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection,” Immunity, vol. 8, no. 2, pp. 177–187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. P. V. Lehmanann, T. Forthuber, A. Miller, and E. E. Sercaz, “Spreading of T-cell autoimmunity to cryptic determinants of an antigen,” Nature, vol. 358, no. 6382, pp. 155–157, 1992. View at Publisher · View at Google Scholar
  56. D. Yeter and R. Deth, “ITPKC susceptibility in Kawasaki syndrome as a sensitizing factor for autoimmunity and coronary arterial wall relaxation induced by thimerosal's effects on calcium signaling via IP3,” Autoimmunity Reviews, vol. 11, no. 12, pp. 903–908, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. N. Agmon-Levin, J. Damoiseaux, C. Kallenberg, U. Sack, T. Witte, M. Herold et al., “International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies,” Annals of the Rheumatic Diseases, vol. 73, no. 1, pp. 17–23, 2014. View at Publisher · View at Google Scholar