Table of Contents Author Guidelines Submit a Manuscript
Autoimmune Diseases
Volume 2014, Article ID 437231, 18 pages
http://dx.doi.org/10.1155/2014/437231
Review Article

A Potential Link between Environmental Triggers and Autoimmunity

Immunosciences Lab., Inc., 822 S. Robertson Boulevard, Suite 312, Los Angeles, CA 90035, USA

Received 26 September 2013; Revised 19 November 2013; Accepted 21 November 2013; Published 12 February 2014

Academic Editor: K. Michael Pollard

Copyright © 2014 Aristo Vojdani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Munz, J. D. Lunemann, M. T. Getts et al., “Antiviral immune responses: triggers of or triggered by autoimmunity?” Nature Reviews Immunology, vol. 9, pp. 246–228, 2009. View at Publisher · View at Google Scholar
  2. C. Selmi, Q. Lu, and M. C. Humble, “Heritability versus the role of environment in autoimmunity,” Journal of Autoimmunity, vol. 39, no. 4, pp. 249–252, 2012. View at Publisher · View at Google Scholar
  3. F. W. Miller, K. M. Pollard, C. G. Parks et al., “Criteria for environmentally associated autoimmune disease,” Journal of Autoimmunity, vol. 39, no. 4, pp. 253–258, 2012. View at Publisher · View at Google Scholar
  4. D. P. Bogdanos, D. S. Smyk, E. I. Rigopoulou et al., “Twin studies in autoimmune disease: genetics, gender and environment,” Journal of Autoimmunity, vol. 38, no. 2-3, pp. J156–J169, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Mahdi, B. A. Fisher, H. Källberg et al., “Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis,” Nature Genetics, vol. 41, no. 12, pp. 1319–1324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. V. K. Kuchroo, P. S. Ohashi, R. B. Sartor, and C. G. Vinuesa, “Dysregulation of immune homeostasis in autoimmune diseases,” Nature Medicine, vol. 18, no. 1, pp. 42–47, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Bayry, S. Sibéril, F. Triebel, D. F. Tough, and S. V. Kaveri, “Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy,” Drug Discovery Today, vol. 12, no. 13-14, pp. 548–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Linterman, R. J. Rigby, R. K. Wong et al., “Follicular helper T cells are required for systemic autoimmunity,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 561–576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Simpson, P. A. Gatenby, A. Wilson et al., “Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 234–244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. E. Bigazzi, “Autoimmunity caused by xenobiotics,” Toxicology, vol. 119, no. 1, pp. 1–21, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. K. M. Pollard, P. Hultman, and D. H. Kono, “Toxicology of autoimmune diseases,” Chemical Research in Toxicology, vol. 23, no. 3, pp. 455–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. M. Pollard, “Gender differences in autoimmunity associated with exposure to environmental factors,” Journal of Autoimmunity, vol. 38, no. 2-3, pp. J177–J186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Germolec, D. H. Kono, J. C. Pfau et al., “Animal models used to examine the role of the environment in the deveopment of autoimmune disease: findings from an NIEHS expert panel workshop,” Journal of Autoimmunity, vol. 39, no. 4, pp. 285–293, 2012. View at Publisher · View at Google Scholar
  14. P. Griem, M. Wulferink, B. Sachs, J. B. González, and E. Gleichmann, “Allergic and autoimmune reactions to xenobiotics: how do they arise?” Immunology Today, vol. 19, no. 3, pp. 133–141, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. E. Gershwin, C. Selmi, H. J. Worman et al., “Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients,” Hepatology, vol. 42, no. 5, pp. 1194–1202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Rieger and M. E. Gershwin, “The X and why of xenobiotics in primary biliary cirrhosis,” Journal of Autoimmunity, vol. 28, no. 2-3, pp. 76–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Selmi, “Mechanisms of environmental influences on human autoimmunity: a National Institute of Environmental Health Sciences expert panel workshop,” Journal of Autoimmunity, vol. 39, no. 4, pp. 272–284, 2012. View at Publisher · View at Google Scholar
  18. C. Barragan-Martinez, C. A. Speck-Hernandez, G. Montoya-Ortiz et al., “Organic solvents as risk factor for autoimmune diseases: a systemic review and meta-analysis,” PLOS ONE, vol. 7, no. 12, Article ID e51506, 2012. View at Publisher · View at Google Scholar
  19. A. Baccarelli, R. O. Wright, V. Bollati et al., “Rapid DNA methylation changes after exposure to traffic particles,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 7, pp. 572–578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Kivity, N. Agmon-Levin, M. Blank, and Y. Shoenfeld, “Infections and autoimmunity—friends or foes?” Trends in Immunology, vol. 30, no. 8, pp. 409–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. M. B. A. Oldstone, M. Nerenberg, P. Southern, J. Price, and H. Lewicki, “Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response,” Cell, vol. 65, no. 2, pp. 319–331, 1991. View at Publisher · View at Google Scholar · View at Scopus
  22. D. N. Posnett and D. Yarilin, “Amplification of autoimmune disease by infection,” Arthritis Research and Therapy, vol. 7, no. 2, pp. 74–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. K. C. Faé, D. D. Da Silva, S. E. Oshiro et al., “Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease,” Journal of Immunology, vol. 176, no. 9, pp. 5662–5670, 2006. View at Google Scholar · View at Scopus
  24. M. Blank, I. Krause, M. Fridkin et al., “Bacterial induction of autoantibodies to β2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome,” The Journal of Clinical Investigation, vol. 109, no. 6, pp. 797–804, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. S. J. Richardson, A. Willcox, A. J. Bone, A. K. Foulis, and N. G. Morgan, “The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes,” Diabetologia, vol. 52, no. 6, pp. 1143–1151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Yu, D. T. Robles, N. Abiru et al., “Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1701–1706, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. A. L. Notkins, “New predictors of disease,” Scientific American, vol. 296, no. 3, pp. 72–79, 2007. View at Google Scholar · View at Scopus
  28. D. R. Gamble, M. L. Kinsley, M. G. FitzGerald, R. Bolton, and K. W. Taylor, “Viral antibodies in diabetes mellitus,” British medical journal, vol. 3, no. 671, pp. 627–630, 1969. View at Google Scholar · View at Scopus
  29. G. Frisk, G. Friman, T. Tuvemo, J. Fohlman, and H. Diderholm, “Coxsackie B virus IgM in children at onset of Type 1 (insulin-dependent) diabetes mellitus: evidence for IgM induction by a recent or current infection,” Diabetologia, vol. 35, no. 3, pp. 249–253, 1992. View at Google Scholar · View at Scopus
  30. G. B. Clements, D. N. Galbraith, and K. W. Taylor, “Coxsackie B virus infection and onset of childhood diabetes,” The Lancet, vol. 346, no. 8969, pp. 221–223, 1995. View at Google Scholar · View at Scopus
  31. J. W. Yoon, T. Onodera, and A. L. Notkins, “Virus-induced diabetes mellitus. XV. Beta cell damage and insulin-dependent hyperglycemia in mice infected with Coxsackie virus B4,” Journal of Experimental Medicine, vol. 148, no. 4, pp. 1068–1080, 1978. View at Google Scholar · View at Scopus
  32. J. W. Yoon, M. Austin, T. Onodera, and A. L. Notkins, “Virus-induced diabetes mellitus. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis,” The New England Journal of Medicine, vol. 300, no. 21, pp. 1173–1179, 1979. View at Google Scholar · View at Scopus
  33. D. L. Kaufman, M. G. Erlander, M. Clare-Salzler, M. A. Atkinson, N. K. Maclaren, and A. J. Tobin, “Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus,” The Journal of Clinical Investigation, vol. 89, no. 1, pp. 283–292, 1992. View at Google Scholar · View at Scopus
  34. K. Sadeharju, M. Lönnrot, T. Kimpimäki et al., “Enterovirus antibody levels during the first two years of life in prediabetic autoantibody-positive children,” Diabetologia, vol. 44, no. 7, pp. 818–823, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Calcinaro, S. Dionisi, M. Marinaro et al., “Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse,” Diabetologia, vol. 48, no. 8, pp. 1565–1575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Vaarala, M. A. Atkinson, and J. Neu, “The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity,” Diabetes, vol. 57, no. 10, pp. 2555–2562, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Sechi, V. Rosu, A. Pacifico, G. Fadda, N. Ahmed, and S. Zanetti, “Humoral immune responses of type 1 diabetes patients to Mycobacterium avium subsp. paratuberculosis lend support to the infectious trigger hypothesis,” Clinical and Vaccine Immunology, vol. 15, no. 2, pp. 320–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. H. Park, A. B. Bourla, D. L. Kastner et al., “Lighting the fires within: the cell biology of autoinflammatory disease,” Nature Reviews Immunology, vol. 12, pp. 571–580, 2012. View at Google Scholar
  39. S. Subramanian, “Etiopathogenesis of rheumatoid arthritis may be misunderstood of non-infectious—a review on infectious etiology of RA,” Asian Journal of Medical Sciences, vol. 1, no. 2, pp. 1–9, 2009. View at Google Scholar
  40. D. Farquharson, J. P. Butcher, and S. Culshaw, “Periodontitis, porphyromonas, and the pathogenesis of rheumatoid arthritis,” Mucosal Immunology, vol. 5, no. 2, pp. 112–120, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. H.-J. Wu, I. I. Ivanov, J. Darce et al., “Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells,” Immunity, vol. 32, no. 6, pp. 815–827, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. S. H. Gaston and M. S. Lillicrap, “Arthritis associated with enteric infection,” Best Practice and Research, vol. 17, no. 2, pp. 219–239, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. G. J. McColl, M. B. Diviney, R. F. Holdsworth et al., “HLA-B27 expression and reactive arthritis susceptibility in two patient cohorts infected with Salmonella Typhimurium,” Australian and New Zealand Journal of Medicine, vol. 30, no. 1, pp. 28–32, 2000. View at Google Scholar · View at Scopus
  44. T. Hannu, L. Mattila, A. Siitonen, and M. Leirisalo-Repo, “Reactive arthritis attributable to Shigella infection: a clinical and epidemiological nationwide study,” Annals of the Rheumatic Diseases, vol. 64, no. 4, pp. 594–598, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Ebringer and T. Rashid, “Rheumatoid arthritis is an autoimmune disease triggered by Proteus urinary tract infection,” Clinical and Developmental Immunology, vol. 13, no. 1, pp. 41–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. E. Pope, A. Krizova, A. X. Garg, H. Thiessen-Philbrook, and J. M. Ouimet, “Campylobacter reactive arthritis: a systematic review,” Seminars in Arthritis and Rheumatism, vol. 37, no. 1, pp. 48–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. L. Domínguez-López, M. E. Cancino-Díaz, L. Jiménez-Zamudio, J. Granados-Arreola, R. Burgos-Vargas, and E. García-Latorre, “Cellular immune response to Klebsiella pneumoniae antigens in patients with HLA-B27+ ankylosing spondylitis,” Journal of Rheumatology, vol. 27, no. 6, pp. 1453–1460, 2000. View at Google Scholar · View at Scopus
  48. A. Cope, J. Anderson, and E. Wilkins, “Clostridium difficile toxin-induced reactive arthritis in a patient with chronic Reiter's syndrome,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 11, no. 1, pp. 40–43, 1992. View at Google Scholar · View at Scopus
  49. Z.-Q. Liu, G.-M. Deng, S. Foster, and A. Tarkowski, “Staphylococcal peptidoglycans induce arthritis,” Arthritis Research, vol. 3, no. 6, pp. 375–380, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. K. C. Faé, D. D. Da Silva, S. E. Oshiro et al., “Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease,” Journal of Immunology, vol. 176, no. 9, pp. 5662–5670, 2006. View at Google Scholar · View at Scopus
  51. E. Hermann, W.-J. Mayet, O. Klein et al., “Candida arthritis: cellular immune responses of synovial fluid and peripheral blood lymphocytes to Candida albicans,” Annals of the Rheumatic Diseases, vol. 50, no. 10, pp. 697–701, 1991. View at Google Scholar · View at Scopus
  52. W. D. Sutliff, R. Shephard, and W. B. Dunham, “Acute Leptospira pomona arthritis and myocarditis,” Annals of internal medicine, vol. 39, no. 1, pp. 134–140, 1953. View at Google Scholar · View at Scopus
  53. J. D. Carter, L. R. Espinoza, R. D. Inman et al., “Combination antibiotics as a treatment for chronic Chlamydia-induced reactive arthritis: a double-blind, placebo-controlled, prospective trial,” Arthritis and Rheumatism, vol. 62, no. 5, pp. 1298–1307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. B. C. Cole and J. R. Ward, “Mycoplasmas as arthritogenic agents,” in The Mycoplasmas, J. G. Tully and R. F. Whitcomb, Eds., pp. 367–398, Academic Press, New York, NY, USA, 1979. View at Google Scholar
  55. H. R. Kim, E. Y. Kim, J. Cerny, and K. D. Moudgil, “Antibody responses to mycobacterial and self heat shock protein 65 in autoimmune arthritis: epitope specificity and implication in pathogenesis,” Journal of Immunology, vol. 177, no. 10, pp. 6634–6641, 2006. View at Google Scholar · View at Scopus
  56. D. Imai, K. Holden, E. M. Velasquez et al., “Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31,” BMC Microbiology, vol. 13, no. 100, 2013. View at Publisher · View at Google Scholar
  57. J. R. Kerr, J. P. Cartron, M. D. Curran, J. E. Moore, J. R. M. Elliott, and R. A. B. Mollan, “A study of the role of parvovirus B19 in rheumatoid arthritis,” British Journal of Rheumatology, vol. 34, no. 9, pp. 809–813, 1995. View at Google Scholar · View at Scopus
  58. F. Pratesi, C. Tommasi, C. Anzilotti, D. Chimenti, and P. Migliorini, “Deiminated Epstein-Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 54, no. 3, pp. 733–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. K. Bech, O. Clemmensen, and J. H. Larsen, “Cell-mediated immunity to Yersinia enterocolitica serotype 3 in patients with thyroid diseases,” Allergy, vol. 33, no. 2, pp. 82–88, 1978. View at Google Scholar · View at Scopus
  60. I. Shimon, C. Pariente, J. Shlomo-David, Z. Grossman, and J. Sack, “Transient elevation of triiodothyronine caused by triiodothyronine autoantibody associated with acute Epstein-Barr-virus infection,” Thyroid, vol. 13, no. 2, pp. 211–215, 2003. View at Google Scholar · View at Scopus
  61. K. Mori, Y. Munakata, T. Saito et al., “Intrathyroidal persistence of human parvovirus B19 DNA in a patient with Hashimoto's thyroiditis,” Journal of Infection, vol. 55, no. 2, pp. e29–e31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Fernandez-Soto, A. Gonzalez, F. Escobar-Jimenez et al., “Increased risk of autoimmune thyroid disease in hepatitis C vs hepatitis B before, during, and after discontinuing interferon therapy,” Archives of Internal Medicine, vol. 158, no. 13, pp. 1445–1448, 1998. View at Publisher · View at Google Scholar · View at Scopus
  63. R. C. Parmar, S. B. Bavdekar, D. R. Sahu, S. Warke, and J. R. Kamat, “Thyroiditis as a presenting feature of mumps,” Pediatric Infectious Disease Journal, vol. 20, no. 6, pp. 637–638, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. P. R. Ziring, G. Gallo, and M. Finegold, “Chronic lymphocytic thyroiditis: identification of rubella virus antigen in the thyroid of a child with congenital rubella,” Journal of Pediatrics, vol. 90, no. 3, pp. 419–420, 1977. View at Google Scholar · View at Scopus
  65. P. Brouqui, D. Raoult, and B. Conte-Devolx, “Coxsackie thyroiditis,” Annals of Internal Medicine, vol. 114, no. 12, pp. 1063–1064, 1991. View at Google Scholar · View at Scopus
  66. H. Kawai, T. Inui, S. Kashiwagi et al., “HTLV-I infection in patients with autoimmune thyroiditis (Hashimoto's thyroiditis),” Journal of Medical Virology, vol. 38, no. 2, pp. 138–141, 1992. View at Publisher · View at Google Scholar · View at Scopus
  67. J. L. Leite, N. E. Bufalo, R. B. Santos et al., “Human herpes virus type 6 (HHV6) and human herpes virus type 7 (HHV7) may increase the susceptibility to Graves disease in individuals with inherited diminished TP53 apoptotic function,” in Proceedings of the 33rd annual meeting of the European Thyroid Association, Thessalonique, 2008.
  68. T. F. Davies, “Infection and autoimmune thyroid disease,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 3, pp. 674–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Ray, N. Sonthalia, S. Kundu et al., “Autoimmune disorders: an overview of molecular and cellular basis in today's perspective,” Journal of Clinical & Cellular Immunology, 2012. View at Publisher · View at Google Scholar
  70. M. E. Gershwin, “The mosaic of autoimmunity,” Autoimmunity Reviews, vol. 7, no. 3, pp. 161–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. V. K. Tuohy, M. Yu, B. Weinstock-Guttman, and R. P. Kinkel, “Diversity and plasticity of self recognition during the development of multiple sclerosis,” The Journal of Clinical Investigation, vol. 99, no. 7, pp. 1682–1690, 1997. View at Google Scholar · View at Scopus
  72. R. C. Duke, “Self recognition by T cells. I. Bystander killing of target cells bearing syngeneic MHC antigens,” Journal of Experimental Medicine, vol. 170, no. 1, pp. 59–71, 1989. View at Google Scholar · View at Scopus
  73. K. W. Wucherpfennig, “Mechanisms for the induction of autoimmunity by infectious agents,” The Journal of Clinical Investigation, vol. 108, no. 8, pp. 1097–1104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. N. Agmon-Levin, M. Ram, O. Barzilai et al., “Prevalence of hepatitis C serum antibody in autoimmune diseases,” Journal of Autoimmunity, vol. 32, no. 3-4, pp. 261–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. I. J. Brown, I. Tzoulaki, V. Candeias, and P. Elliott, “Salt intakes around the world: implications for public health,” International Journal of Epidemiology, vol. 38, no. 3, pp. 791–813, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. G. Rose, J. Stamler, R. Stamler et al., “Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion,” British Medical Journal, vol. 297, no. 6644, pp. 319–328, 1988. View at Google Scholar · View at Scopus
  77. E. Elliott, “Change in salt intake affects blood pressure of chimpanzees: implications for human populations,” Circulation, vol. 116, no. 14, pp. 1563–1568, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. F. M. Sacks, L. P. Svetkey, W. M. Vollmer et al., “Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (dash) diet,” The New England Journal of Medicine, vol. 344, no. 1, pp. 3–10, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. N. A. Graudal, A. M. Galløe, and P. Garred, “Effects of sodium restriction on blood pressure, renin, aldosterone, catecholamines, cholesterols, and triglyceride: a meta-analysis,” Journal of the American Medical Association, vol. 279, no. 17, pp. 1383–1391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. N. R. Cook, J. A. Cutler, E. Obarzanek et al., “Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP),” British Medical Journal, vol. 334, no. 7599, pp. 885–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. J. X. Xie, S. Sasaki, J. V. Joossens, and H. Kesteloot, “The relationship between urinary cations obtained from the INTERSALT study and cerebrovascular mortality,” Journal of Human Hypertension, vol. 6, no. 1, pp. 17–21, 1992. View at Google Scholar · View at Scopus
  82. N. Sasaki, “High blood pressure and the salt intake of the Japanese,” International Heart Journal, vol. 3, pp. 313–324, 1962. View at Google Scholar
  83. A. MacHnik, W. Neuhofer, J. Jantsch et al., “Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism,” Nature Medicine, vol. 15, no. 5, pp. 545–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Cretney, A. Kallies, and S. L. Nutt, “Differentiation and function of FOXP3+ effector regulatory T cells,” Trends in Immunology, vol. 34, no. 2, pp. 74–80, 2013. View at Google Scholar
  85. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Kleinewietfeld, A. Manzel, J. Titze et al., “Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells,” Nature, vol. 496, pp. 518–522, 2013. View at Google Scholar
  87. C. Wu, N. Yosef, T. Thalhamer et al., “Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1,” Nature, pp. 513–517, 2013. View at Publisher · View at Google Scholar
  88. J. J. O' Shea and R. G. Jones, “Autoimmunity: rubbing salt in the wound,” Nature, vol. 496, pp. 437–439, 2013. View at Publisher · View at Google Scholar
  89. Institute of Medicine, Dietary Reference Intakes For Water, Potassium, Sodium, Chloride, and Sulphate, National Academies Press, Washington, DC, USA, 2004.
  90. A. Vojdani, A. W. Campbell, E. Anyanwu, A. Kashanian, K. Bock, and E. Vojdani, “Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A,” Journal of Neuroimmunology, vol. 129, no. 1-2, pp. 168–177, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Vojdani and I. Tarash, “Cross-reaction between gliadin and different food and tissue antigens,” Food and Nutrition Sciences, vol. 4, pp. 20–32, 2013. View at Google Scholar
  92. A. Stefferl, A. Schubart, M. Storch et al., “Butyrophilin, a milk protein, modulates the encephalitogenic T cell response to myelin oligodendrocyte glycoprotein in experimental autoimmune Encephalomyelitis,” Journal of Immunology, vol. 165, no. 5, pp. 2859–2865, 2000. View at Google Scholar · View at Scopus
  93. Ø. Molberg and L. M. Sollid, “A gut feeling for joint inflammation—using coeliac disease to understand rheumatoid arthritis,” Trends in Immunology, vol. 27, no. 4, pp. 188–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Karjalainen, J. M. Martin, M. Knip et al., “A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus,” The New England Journal of Medicine, vol. 327, no. 5, pp. 302–307, 1992. View at Google Scholar · View at Scopus
  95. T. L. Van Belle, K. T. Coppieters, and M. G. Von Herrath, “Type 1 diabetes: etiology, immunology, and therapeutic strategies,” Physiological Reviews, vol. 91, no. 1, pp. 79–118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. M. G. Cavallo, D. Fava, L. Monetini, F. Barone, and P. Pozzilli, “Cell-mediated immune response to β casein in recent-onset insulin-dependent diabetes: implications for disease pathogenesis,” The Lancet, vol. 348, no. 9032, pp. 926–928, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. S. M. Virtanen, E. Laara, E. Hypponen et al., “Cow's milk consumption, HLA-DQB1 genotype, and type 1 diabetes: a nested case-control study of sibling of children with diabetes,” Diabetes, vol. 49, no. 9, p. 1617, 2000. View at Google Scholar · View at Scopus
  98. U. Volta, C. Bonazzi, E. Pisi, S. Salardi, and E. Cacciari, “Antigliadin and antireticulin antibodies in coeliac disease and at onset of diabetes in children,” The Lancet, vol. 2, no. 8566, pp. 1034–1035, 1987. View at Google Scholar · View at Scopus
  99. A. J. MacFarlane, K. M. Burghardt, J. Kelly et al., “A type 1 diabetes-related protein from wheat (Triticum aestivum): cDNA clone of a wheat storage globulin, Glb1, linked to islet damage,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 54–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Vojdani, “The characterization of the repertoire of wheat antigens and peptides involved in the humoral immune responses in patients with gluten sensitivity and Crohn's disease,” ISRN Allergy, vol. 2011, Article ID 950104, 12 pages, 2011. View at Publisher · View at Google Scholar
  101. Z. Sumnik, S. Kolouskova, H. Malcova et al., “High prevalence of coeliac disease in siblings of children with type 1 diabetes,” European Journal of Pediatrics, vol. 164, no. 1, pp. 9–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. M. Hvatum, L. Kanerud, R. Hällgren, and P. Brandtzaeg, “The gut-joint axis: cross reactive food antibodies in rheumatoid arthritis,” Gut, vol. 55, no. 9, pp. 1240–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. E. Sugai, A. Cherñavsky, S. Pedreira et al., “Bone-specific antibodies in Sera from patients with celiac disease: characterization and implications in osteoporosis,” Journal of Clinical Immunology, vol. 22, no. 6, pp. 353–362, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Frustaci, L. Cuoco, C. Chimenti et al., “Celiac disease associated with autoimmune myocarditis,” Circulation, vol. 105, no. 22, pp. 2611–2618, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Hadjivassiliou, M. Mäki, D. S. Sanders et al., “Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia,” Neurology, vol. 66, no. 3, pp. 373–377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. A. Vojdani, T. O'Bryan, J. A. Green et al., “Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism,” Nutritional Neuroscience, vol. 7, no. 3, pp. 151–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Alaedini, H. Okamoto, C. Briani et al., “Immune cross-reactivity in celiac disease: anti-gliadin antibodies bind to neuronal synapsin I,” Journal of Immunology, vol. 178, no. 10, pp. 6590–6595, 2007. View at Google Scholar · View at Scopus
  108. L. C. Chin, M. K. Jones, and J. G. C. Kingham, “Celiac disease and autoimmune thyroid disease,” Clinical Medicine and Research, vol. 5, no. 3, pp. 184–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Bodvarsson, I. Jonsdottir, J. Freysdottir, J. N. Leonard, L. Fry, and H. Valdimarsson, “Dermatitis herpetiformis—an autoimmune disease due to cross-reaction between dietary glutenin and dermal elastin?” Scandinavian Journal of Immunology, vol. 38, no. 6, pp. 546–550, 1993. View at Publisher · View at Google Scholar · View at Scopus
  110. D. B.-A. Shor, O. Barzilai, M. Ram et al., “Gluten sensitivity in multiple sclerosis: experimental myth or clinical truth,” Annals of the New York Academy of Sciences, vol. 1173, pp. 343–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. C. O' Leary, C. H. Walsj, P. Wieneke et al., “Coeliac disease and autoimmune Addison's disease: a clinical pitfall,” Quarterly Journal of Medicine, vol. 95, no. 2, pp. 79–82, 2002. View at Google Scholar
  112. A. J. Naiyer, J. Shah, L. Hernandez et al., “Tissue transglutaminase antibodies in individuals with celiac disease bind to thyroid follicles and extracellular matrix and may contribute to thyroid dysfunction,” Thyroid, vol. 18, no. 11, pp. 1171–1178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. G. Zanoni, R. Navone, C. Lunardi et al., “In celiac disease, a subset of autoantibodies against transglutaminase binds toll-like receptor 4 and induces activation of monocytes,” PLoS Medicine, vol. 3, no. 9, pp. 1637–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. C. Sategna-Guidetti, E. Franco, S. Martini, and M. Bobbio, “Binding by serum IgA antibodies from patients with coeliac disease to monkey heart tissue,” Scandinavian Journal of Gastroenterology, vol. 39, no. 6, pp. 540–543, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. E. V. Marietta, M. J. Camilleri, L. A. Castro, P. K. Krause, M. R. Pittelkow, and J. A. Murray, “Transglutaminase autoantibodies in dermatitis herpetiformis and celiac sprue,” Journal of Investigative Dermatology, vol. 128, no. 2, pp. 332–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. V. Toscano, F. G. Conti, E. Anastasi et al., “Importance of gluten in the induction of endocrine autoantibodies and organ dysfunction in adolescent celiac patients,” American Journal of Gastroenterology, vol. 95, no. 7, pp. 1742–1748, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. O. Rozenberg, A. Lerner, A. Pacht et al., “A new algorithm for the diagnosis of celiac disease,” Cellular and Molecular Immunology, vol. 8, no. 2, pp. 146–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. O. Meyer, “Is the celiac disease model relevant to rheumatoid arthritis?” Joint Bone Spine, vol. 71, no. 1, pp. 4–6, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Burkhardt, B. Sehnert, R. Bockermann, Å. Engström, J. R. Kalden, and R. Holmdahl, “Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis,” European Journal of Immunology, vol. 35, no. 5, pp. 1643–1652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. C. Masson-Bessière, M. Sebbag, E. Girbal-Neuhauser et al., “The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the α-and β-chains of fibrin,” Journal of Immunology, vol. 166, no. 6, pp. 4177–4184, 2001. View at Google Scholar · View at Scopus
  121. E. R. Vossenaar, N. Després, E. Lapointe et al., “Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin,” Arthritis research & therapy, vol. 6, no. 2, pp. R142–150, 2004. View at Google Scholar · View at Scopus
  122. A. Kinloch, V. Tatzer, R. Wait et al., “Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoid arthritis,” Arthritis research & therapy, vol. 7, no. 6, pp. R1421–1429, 2005. View at Google Scholar · View at Scopus
  123. J. B. Weinberg, A. M. M. Pippen, and C. S. Greenberg, “Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthritis and rheumatoid arthritis,” Arthritis and Rheumatism, vol. 34, no. 8, pp. 996–1005, 1991. View at Google Scholar · View at Scopus
  124. J. G. Routsias, J. D. Goules, A. Goules, G. Charalampakis, and D. Pikazis, “Autopathogenic correlation of periodontitis and rheumatoid arthritis,” Rheumatology, vol. 50, no. 7, Article ID ker090, pp. 1189–1193, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. J. A. Hill, S. Southwood, A. Sette, A. M. Jevnikar, D. A. Bell, and E. Cairns, “Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule,” Journal of Immunology, vol. 171, no. 2, pp. 538–541, 2003. View at Google Scholar · View at Scopus
  126. K. Lundberg, N. Wegner, T. Yucel-Lindberg, and P. J. Venables, “Periodontitis in RA-the citrullinated enolase connection,” Nature Reviews Rheumatology, vol. 6, no. 12, pp. 727–730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. K. Lundberg, A. Kinloch, B. A. Fisher et al., “Antibodies to citrullinated α-enolase peptide 1 are specific for rheumatoid arthritis and cross-react with bacterial enolase,” Arthritis and Rheumatism, vol. 58, no. 10, pp. 3009–3019, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. A. J. Kinloch, S. Alzabin, W. Brintnell et al., “Immunization with porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice,” Arthritis and Rheumatism, vol. 63, no. 12, pp. 3818–3823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. J. A. Hill, D. A. Bell, W. Brintnell et al., “Arthritis induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic mice,” Journal of Experimental Medicine, vol. 205, no. 4, pp. 967–979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. American Autoimmune Related Disease Association, http://www.aarda.org.