Table of Contents Author Guidelines Submit a Manuscript
Applied and Environmental Soil Science
Volume 2012, Article ID 907831, 11 pages
http://dx.doi.org/10.1155/2012/907831
Research Article

Impact of Waste Materials and Organic Amendments on Soil Properties and Vegetative Performance

Department of Plant, Soil, and Entomological Sciences, University of Idaho, Moscow, ID 83844-2203, USA

Received 1 June 2011; Accepted 20 October 2011

Academic Editor: Horea Cacovean

Copyright © 2012 Steven L. McGeehan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Weber, A. Karczewska, J. Drozd et al., “Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts,” Soil Biology and Biochemistry, vol. 39, no. 6, pp. 1294–1302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Tejada, M. T. Hernandez, and C. Garcia, “Soil restoration using composted plant residues: effects on soil properties,” Soil and Tillage Research, vol. 102, no. 1, pp. 109–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. M. Li, R. L. Chaney, G. Siebielec, and B. A. Kerschner, “Response of four turfgrass cultivars to limestone and biosolids-compost amendment of a zinc and cadmium contaminated soil at Palmerton, Pennsylvania,” Journal of Environmental Quality, vol. 29, no. 5, pp. 1440–1447, 2000. View at Google Scholar · View at Scopus
  4. K. Debosz, S. O. Petersen, L. K. Kure, and P. Ambus, “Evaluating effects of sewage sludge and household compost on soil physical, chemical and microbiological properties,” Applied Soil Ecology, vol. 19, no. 3, pp. 237–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. F. García-Orenes, C. Guerrero, J. Mataix-Solera, J. Navarro-Pedreño, I. Gómez, and J. Mataix-Beneyto, “Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids,” Soil and Tillage Research, vol. 82, no. 1, pp. 65–76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Zeng, A. G. Campbell, and R. L. Mahler, “Log yard fines as a soil amendment: pot and field studies,” Communications in Soil Science and Plant Analysis, vol. 24, no. 15-16, pp. 2025–2041, 1993. View at Google Scholar · View at Scopus
  7. A. G. Campbell, R. L. Folk, and R. R. Tripepi, “Amended and composted log yard fines as a growth medium for crimson clover and red top grass,” Communications in Soil Science and Plant Analysis, vol. 25, no. 13-14, pp. 2439–2454, 1994. View at Google Scholar · View at Scopus
  8. S. L. Brown, C. L. Henry, R. Chaney, H. Compton, and P. S. DeVolder, “Using municipal biosolids in combination with other residuals to restore metal-contaminated mining areas,” Plant and Soil, vol. 249, no. 1, pp. 203–215, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Bulmer, K. Venner, and C. Prescott, “Forest soil rehabilitation with tillage and wood waste enhances seedling establishment but not height after 8 years,” Canadian Journal of Forest Research, vol. 37, no. 10, pp. 1894–1906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Brown, M. Sprenger, A. Maxemchuk, and H. Compton, “Ecosystem function in alluvial tailings after biosolids and lime addition,” Journal of Environmental Quality, vol. 34, no. 1, pp. 139–148, 2005. View at Google Scholar · View at Scopus
  11. T. D. Glanville, R. A. Persyn, T. L. Richard, J. M. Laflen, and P. M. Dixon, “Environmental effects of applying composted organics to new highway embankments: part 2. Water quality,” Transactions of the American Society of Agricultural Engineers, vol. 47, no. 2, pp. 471–478, 2004. View at Google Scholar · View at Scopus
  12. J. O. Mountford, K. H. Lakhani, and F. W. Kirkham, “Experimental assessment of the effects of nitrogen addition under hay-cutting and aftermath grazing on the vegetation of meadows on a Somerset peat moor,” Journal of Applied Ecology, vol. 30, no. 2, pp. 321–332, 1993. View at Google Scholar · View at Scopus
  13. J. P. Bakker and F. Berendse, “Constraints in the restoration of ecological diversity in grassland and heathland communities,” Trends in Ecology and Evolution, vol. 14, pp. 215–222, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Tandy, H. L. Wallace, D. L. Jones, M. A. Nason, J. C. Williamson, and J. R. Healey, “Can a mesotrophic grassland community be restored on a post-industrial sandy site with compost made from waste materials?” Biological Conservation, vol. 144, no. 1, pp. 500–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. García-Gil, C. Plaza, P. Soler-Rovira, and A. Polo, “Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass,” Soil Biology and Biochemistry, vol. 32, no. 13, pp. 1907–1913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Odlare, V. Arthurson, M. Pell, K. Svensson, E. Nehrenheim, and J. Abubaker, “Land application of organic waste—effects on the soil ecosystem,” Applied Energy, vol. 88, no. 6, pp. 2210–2218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Crecchio, M. Curci, R. Mininni, P. Ricciuti, and P. Ruggiero, “Short-term effects of municipal solid waste compost amendments on soil carbon and nitrogen content, some enzyme activities and genetic diversity,” Biology and Fertility of Soils, vol. 34, no. 5, pp. 311–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Pérez-Piqueres, V. Edel-Hermann, C. Alabouvette, and C. Steinberg, “Response of soil microbial communities to compost amendments,” Soil Biology and Biochemistry, vol. 38, no. 3, pp. 460–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Illera, I. Walter, P. Souza, and V. Cala, “Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soil under a semi-arid environment,” Science of the Total Environment, vol. 255, no. 1–3, pp. 29–44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. B. McBride, “Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks?” Advances in Environmental Research, vol. 8, no. 1, pp. 5–19, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. S. R. Smith, “A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge,” Environment International, vol. 35, no. 1, pp. 142–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Martínez, M. A. Casermeiro, D. Morales, G. Cuevas, and I. Walter, “Effects on run-off water quantity and quality of urban organic wastes applied in a degraded semi-arid ecosystem,” Science of the Total Environment, vol. 305, no. 1–3, pp. 13–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. K. Udeigwe, P. N. Eze, J. M. Teboh, and M. H. Stietiya, “Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality,” Environment International, vol. 37, no. 1, pp. 258–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. V. E. Cabrera, L. J. Stavast, T. T. Baker et al., “Soil and runoff response to dairy manure application on New Mexico rangeland,” Agriculture, Ecosystems and Environment, vol. 131, no. 3-4, pp. 255–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Schoof and D. Houkal, “The evolving science of chemical risk assessment for land-applied biosolids,” Journal of Environmental Quality, vol. 34, no. 1, pp. 114–121, 2005. View at Google Scholar · View at Scopus
  26. C. E. Elzinga, D. W. Salzer, and J. W. Willoughby, “Field techniques for measuring vegetation,” in Measuring and Monitoring Plant Populations, BLM Technical Reference, 1998. View at Google Scholar
  27. R. O. Miller, J. Kotuby-Amacher, and J. B. Rodriguez, “Western States Laboratory Proficiency Testing Program, Soil and Plant Analytical Methods,” Version 4.00, 1997.
  28. J. R. Sims and V. A. Haby, “The colorimetric determination of soil organic matter,” Soil Science, vol. 112, pp. 137–141, 1971. View at Google Scholar
  29. U.S. E.P.A, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, vol. SW-846, 3rd edition, 1986.
  30. ASL, “Laboratory Quality Management Plan,” University of Idaho Analytical Sciences Laboratory, University of Idaho, Moscow, Idaho, USA, 2003.
  31. SAS, “SAS OnlineDoc,” version 9.1.3, SAS Institute Inc., Cary, NC, USA, 2004.
  32. S. Davis, “Regulated metals: the rule of 20,” Pollution Prevention Institute, Kansas SBEAP, Kansas State University, 2001.
  33. R. L. Mahler, “Northern Idaho Fertilizer Guide, Legume and Legume-Grass Pastures,” CIS 851, University of Idaho Agricultural Experiment Station, 2005.
  34. S. L. McGeehan, “Impact of available nitrogen in mine site revegetation: a case study in the Coeur d'Alene (Idaho) mining district,” Communications in Soil Science and Plant Analysis, vol. 40, no. 1–6, pp. 82–95, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. D. M. Sullivan, S. C. Fransen, C. G. Cogger, and A. I. Bary, “Biosolids and dairy manure as nitrogen sources for prairiegrass on a poorly drained soil,” Journal of Production Agriculture, vol. 10, no. 4, pp. 589–596, 1997. View at Google Scholar · View at Scopus
  36. B. L. Miller, D. B. Parker, J. M. Sweeten, and C. Robinson, “Response of seven crops and two soils to application of beef cattle feedyard effluent,” Transactions of the American Society of Agricultural Engineers, vol. 44, no. 2, pp. 309–315, 2001. View at Google Scholar · View at Scopus
  37. M. B. Robinson, P. J. Polglase, and C. J. Weston, “Loss of mass and nitrogen from biosolids applied to a pine plantation,” Australian Journal of Soil Research, vol. 40, no. 6, pp. 1027–1039, 2002. View at Google Scholar · View at Scopus
  38. M. B. Robinson and H. Röper, “Volatilisation of nitrogen from land applied biosolids,” Australian Journal of Soil Research, vol. 41, no. 4, pp. 711–716, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Mendoza, N. W. Assadian, and W. Lindemann, “The fate of nitrogen in a moderately alkaline and calcareous soil amended with biosolids and urea,” Chemosphere, vol. 63, no. 11, pp. 1933–1941, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. T. D. Whitson, Weeds of the West, University of Wyoming Press, 5th edition, 1999.
  41. Z. Q. Zhang, W. S. Shu, C. Y. Lan, and M. H. Wong, “Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings,” Restoration Ecology, vol. 9, no. 4, pp. 378–385, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. D. F. Polster, J. Soll, and J. Myers, “Managing northwest invasive vegetation,” in Restoring the Pacific Northwest: The Art and Science of Ecological Restoration in Cascadia, D. Apostol and M. Sinclair, Eds., Island Press, 2006. View at Google Scholar
  43. H. L. Carlson and J. E. Hill, “Wild oat (Avena fatua) competition with spring wheat: effects of nitrogen fertilization,” Weed Science, vol. 34, pp. 29–33, 1985. View at Google Scholar
  44. B. Jørnsgård, K. Rasmussen, J. Hill, and J. L. Christiansen, “Influence of nitrogen on competition between cereals and their natural weed populations,” Weed Research, vol. 36, no. 6, pp. 461–470, 1996. View at Google Scholar · View at Scopus
  45. S. D. Wilson and D. Tilman, “Components of plant competition along an experimental gradient of nitrogen availability,” Ecology, vol. 72, no. 3, pp. 1050–1065, 1991. View at Google Scholar · View at Scopus
  46. T. K. Rajaniemi, “Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses,” Journal of Ecology, vol. 90, no. 2, pp. 316–324, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Pysek and J. Leps, “Response of a weed community to nitrogen fertilization: a multivariate analysis,” Journal of Veterinary Science, vol. 2, pp. 237–244, 1991. View at Google Scholar