Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 123085, 7 pages
http://dx.doi.org/10.1155/2013/123085
Research Article

Laser Treatment of Wood Surfaces for Ski Cores: An Experimental Parameter Study

1Salzburg University of Applied Sciences, Markt136a, 5431 Kuchl, Austria
2BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln, Austria
3Holztechnikum kuchl, Markt136, 5431 Kuchl, Austria
4Atomic Austria GmbH, Lackengasse 301, 5541 Altenmarkt, Austria

Received 2 May 2013; Revised 8 August 2013; Accepted 17 August 2013

Academic Editor: Gongnan Xie

Copyright © 2013 Alexander Petutschnigg et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. M. Broenstad, N. Auman, and K. Toennesse, “Laser applications in wood processing,” in Proceedings of the 4th NOLAMP Conference, Norges Tekniske Hoegskole, Sonderborg, Denmark, 1993.
  2. T. Orech and M. Kleskenova, Untersuchungen über die Holzbearbeitung mit Laserstrahlen. Drevo. 30. 324, 1975.
  3. M. Panzner, G. Wiedemann, K. Henneberg, R. Fischer, T. Wittke, and R. Dietsch, “Experimental investigation of the laser ablation process on wood surfaces,” Applied Surface Science, vol. 127-129, pp. 787–792, 1998. View at Google Scholar · View at Scopus
  4. N. Parameswaran, “Feinstrukturelle Veränderungen an durch Laserstrahl getrennten Schnittflächen von Holz und Holzwerkstoffen,” Holz als Roh und Werkstoff, vol. 40, no. 11, pp. 421–428, 1982. View at Google Scholar
  5. I. Kubovsky and F. Kačik, “FT-IR study of maple wood changes due to CO2 laser irradiation,” Cellulose Chemistry and Technology, vol. 43, no. 7-8, pp. 235–240, 2009. View at Google Scholar · View at Scopus
  6. F. Kačík and I. Kubovský, “Chemical changes of beech wood due to CO2 laser irradiation,” Journal of Photochemistry and Photobiology A, vol. 222, pp. 105–110, 2011. View at Google Scholar
  7. H. Wust, P. Haller, and G. Wiedemann, “Experimental study of the effect of a Laser beam on the morphology of wood surfaces,” in Proceeedings of the 3rd International Symposium on Wood Machining, Lausanne, Switzerland, 2007.
  8. C.-J. Lin, Y.-C. Wang, L.-D. Lin, C.-R. Chiou, Y.-N. Wang, and M.-J. Tsai, “Effects of feed speed ratio and laser power on engraved depth and color difference of Moso bamboo lamina,” Journal of Materials Processing Technology, vol. 198, no. 1-3, pp. 419–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Leone, V. Lopresto, and I. de Iorio, “Wood engraving by Q-switched diode-pumped frequency-doubled Nd : YAG green laser,” Optics and Lasers in Engineering, vol. 47, no. 1, pp. 161–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Bundesamt für Wald, sterreichische Waldinventur 2007-2009. Bundesministerium für Land- und Forstwirtschaft, Umwelt- und Wasserwirtschaft. Wien, 2012.
  11. A. Teischinger, J. Fellner, and A. Eder, Heimisches Holz, Pro-Holz Holzinformation Österreich, 1997.
  12. DIN, Kennwerte von Holzarten—Rohdichte, Elastizitätsmodul und Festigkeiten, Deutsches Institut für Normung, 2003.
  13. G. Wyszecki and W. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, Wiley Classics Library, 2000.
  14. J. Hartung, Statistik—Lehr und Handbuch der Angewandten Statistik, Oldenbourg, München, Germany, 2005.
  15. E. L. Back, “Cellulose bei hohen Temperaturen: Selbstvernetzung, Glasumwandlung und Schmelzen unter Einwirkung von Lserstrahlen,” Das Papier, vol. 27, pp. 475–483, 1973. View at Google Scholar
  16. Sandermann, W, and H. Augustin, “Chemische Untersuchungen über die thermische Zersetzung von Holz. Erste Mitteilung- Stand der Forschung,” Holz als Roh und Werkstoff, vol. 21, pp. 256–265, 1963. View at Google Scholar
  17. Sandermann, W, and H. Augustin, “Chemische Untersuchungen über die thermische Zersetzung von Holz. Dritte Mitteilung: chemische Untersuchung des Zersetzungsablaufes,” Holz als Roh und Werkstoff, vol. 22, pp. 377–386, 1964. View at Google Scholar
  18. E. Windeisen, H. Bächle, B. Zimmer, and G. Wegener, “Relations between chemical changes and mechanical properties of thermally treated wood,” Holzforschung, vol. 63, no. 6, pp. 773–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. B. F. Tjeerdsma and H. Militz, “Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood,” Holz als Roh und Werkstoff, vol. 63, no. 2, pp. 102–111, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Windeisen, C. Strobel, and G. Wegener, “Chemische charakterisierung von thermisch belastetem holz: bestimmung der acetylgruppengehalts und FTIR-spektroskopie,” Holz als Roh und Werkstoff, vol. 61, pp. 471–472, 2003. View at Google Scholar
  21. R. A. Kotilainen, T.-J. Toivanen, and R. J. Alén, “FTIR monitoring of chemical changes in softwood during heating,” Journal of Wood Chemistry and Technology, vol. 20, no. 3, pp. 307–320, 2000. View at Google Scholar · View at Scopus
  22. M. Funaoka, T. Kako, and I. Abe, “Condensation of lignin during heating of wood,” Wood Science and Technology, vol. 24, no. 3, pp. 277–288, 1990. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Fengel and G. Wegener, Wood Chemistry Ultrastructure Reaction, Kessel, Remagen, Germany, 2003.