Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 124365, 5 pages
http://dx.doi.org/10.1155/2013/124365
Research Article

Pressure Dependence of the Electrical Resistivity in Polymer Polyaniline

1College of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
2College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
3College of Materials Science, Southwest Jiaotong University, Chengdu 610031, China

Received 3 February 2013; Accepted 15 April 2013

Academic Editor: Zhimin Liu

Copyright © 2013 Daihui Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Polyaniline (PAN) was prepared by using a technique of chemical synthesis to obtain the insulating emeraldine base form. And then PAN was doped with toluenesulfonic acid (TSA), HCl, or camphor sulfonic acid (CSA) to protonate it into conducting salt form. The morphologies and electrical property of PAN under atmospheric pressure were investigated. Subsequently, the high pressure using a Bridgman anvil cell was applied on the doped PAN, and the effect of high pressure on the properties of doped PAN was analyzed. At normal pressure, the conductivity of PAN increases as the PH value increases. While at high pressures, the conductivity of PAN increases, and then it becomes independent of pressure. The results indicate that the conductivity of PAN is related to the presence of the polaron band, and the doped PAN under high pressure will be enhanced strongly in conductivity because of overlap of polaron band and band. However, with the further increase of the applied pressure, scattering mechanisms of carriers limit the conductivity of PAN.