Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 128158, 15 pages
http://dx.doi.org/10.1155/2013/128158
Research Article

Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure

1Department of Civil Engineering, National Institute of Technology, Agartala, Barjala, Tripura (West), Jirania, Pin 799055, India
2Department of Civil Engineering, Bangalore Institute of Technology, K. R. Road, V. V. Puram, Bangalore, Pin 560004, India

Received 30 May 2013; Revised 18 August 2013; Accepted 27 August 2013

Academic Editor: Shaikh Faiz Uddin Ahmed

Copyright © 2013 Tara Sen and H. N. Jagannatha Reddy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K.-T. Lau and L.-M. Zhou, “Mechanical performance of composite-strengthened concrete structures,” Composites B, vol. 32, no. 1, pp. 21–31, 2001. View at Google Scholar · View at Scopus
  2. S. A. Sheikh, “Performance of concrete structures retrofitted with fibre reinforced polymers,” Engineering Structures, vol. 24, no. 7, pp. 869–879, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Ceroni, “Experimental performances of RC beams strengthened with FRP materials,” Construction and Building Materials, vol. 24, no. 9, pp. 1547–1559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Dong, Q. Wang, and Z. Guan, “Structural behaviour of RC beams with external flexural and flexural-shear strengthening by FRP sheets,” Composites B, vol. 44, no. 1, pp. 604–612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Al-Amery and R. Al-Mahaidi, “Coupled flexural-shear retrofitting of RC beams using CFRP straps,” Composite Structures, vol. 75, no. 1–4, pp. 457–464, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. O. Barros, S. J. E. Dias, and J. L. T. Lima, “Efficacy of CFRP-based techniques for the flexural and shear strengthening of concrete beams,” Cement & Concrete Composites, vol. 29, no. 3, pp. 203–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. El-Ghandour, “Experimental and analytical investigation of CFRP flexural and shear strengthening efficiencies of RC beams,” Construction and Building Materials, vol. 25, no. 3, pp. 1419–1429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. Esfahani, M. R. Kianoush, and A. R. Tajari, “Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets,” Engineering Structures, vol. 29, no. 10, pp. 2428–2444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hashemi and R. Al-Mahaidi, “Flexural performance of CFRP textile-retrofitted RC beams using cement-based adhesives at high temperature,” Construction and Building Materials, vol. 28, no. 1, pp. 791–797, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. R. Correia, F. A. Branco, and J. G. Ferreira, “Flexural behaviour of GFRP-concrete hybrid beams with interconnection slip,” Composite Structures, vol. 77, no. 1, pp. 66–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. H. Almusallam, “Load-deflection behavior of RC beams strengthened with GFRP sheets subjected to different environmental conditions,” Cement and Concrete Composites, vol. 28, no. 10, pp. 879–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Correia, L. Valarinho, and F. A. Branco, “Post-cracking strength and ductility of glass-GFRP composite beams,” Composite Structures, vol. 93, no. 9, pp. 2299–2309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, “Are natural fiber composites environmentally superior to glass fiber reinforced composites?” Composites A, vol. 35, no. 3, pp. 371–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Summerscales, N. Dissanayake, A. Virk, and W. Hall, “A review of bast fibres and their composites. Part 2—composites,” Composites A, vol. 41, no. 10, pp. 1336–1344, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. V. K. Mathur, “Composite materials from local resources,” Construction and Building Materials, vol. 20, no. 7, pp. 470–477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Milanese, M. O. H. Cioffi, and H. J. C. Voorwald, “Mechanical behavior of natural fibre composites,” Procedia Engineering, vol. 10, pp. 2022–2027, 2011. View at Publisher · View at Google Scholar
  17. G. Koronis, A. Silva, and M. Fontul, “Green composites: a review of adequate materials for automotive applications,” Composites B, vol. 44, no. 1, pp. 120–127, 2013. View at Publisher · View at Google Scholar
  18. A. K. Bledzki and J. Gassan, “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, vol. 24, no. 2, pp. 221–274, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. K. G. Satyanarayana, G. G. C. Arizaga, and F. Wypych, “Biodegradable composites based on lignocellulosic fibers—an overview,” Progress in Polymer Science, vol. 34, no. 9, pp. 982–1021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Q. Zhang, M. Z. Rong, and X. Lu, “Fully biodegradable natural fiber composites from renewable resources: all-plant fiber composites,” Composites Science and Technology, vol. 65, no. 15-16, pp. 2514–2525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Munikenche Gowda, A. C. B. Naidu, and R. Chhaya, “Some mechanical properties of untreated jute fabric-reinforced polyester composites,” Composites A, vol. 30, no. 3, pp. 277–284, 1999. View at Google Scholar · View at Scopus
  22. J. Gassan and A. K. Bledzki, “Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres,” Composites Science and Technology, vol. 59, no. 9, pp. 1303–1309, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Gassan and A. K. Bledzki, “Alkali treatment of jute fibers: relationship between structure and mechanical properties,” Journal of Applied Polymer Science, vol. 71, no. 4, pp. 623–629, 1999. View at Google Scholar · View at Scopus
  24. A. Stocchi, B. Lauke, A. Vázquez, and C. Bernal, “A novel fiber treatment applied to woven jute fabric/vinylester laminates,” Composites A, vol. 38, no. 5, pp. 1337–1343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W.-M. Wang, Z.-S. Cai, and J.-Y. Yu, “Study on the chemical modification process of jute fiber,” Journal of Engineered Fibers and Fabrics, vol. 3, no. 2, pp. 1–11, 2010. View at Google Scholar · View at Scopus
  26. X. Y. Liu and G. C. Dai, “Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites,” Express Polymer Letters, vol. 1, no. 5, pp. 299–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. C.-H. Chen, C.-Y. Chen, Y.-W. Lo, C.-F. Mao, and W.-T. Liao, “Characterization of alkali-treated jute fibers for physical and mechanical properties,” Journal of Applied Polymer Science, vol. 80, no. 7, pp. 1013–1020, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Jawaid, H. P. S. Abdul Khalil, and A. Abu Bakar, “Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites,” Materials Science and Engineering A, vol. 528, no. 15, pp. 5190–5195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. Ahmed and S. Vijayarangan, “Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites,” Journal of Materials Processing Technology, vol. 207, no. 1–3, pp. 330–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Sudhakara, D. Jagadeesh, Y. Wang et al., “Fabrication of Borassus fruit lignocellulose fibre/PP composites and comparison with jute, sisal and coir fibres,” Carbohydrate Polymers, vol. 98, no. 1, pp. 1002–1010, 2013. View at Publisher · View at Google Scholar
  31. M. S. Meon, M. F. Othman, H. Husain, M. F. Remeli, and M. S. M. Syawal, “Improving tensile properties of kenaf fibres treated with Sodium hydroxide,” Procedia Engineering, vol. 41, pp. 1587–1592, 2012. View at Publisher · View at Google Scholar
  32. O. M. L. Asumani, R. G. Reid, and R. Paskaramoorthy, “The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites,” Composites A, vol. 43, no. 9, pp. 1431–1440, 2012. View at Publisher · View at Google Scholar
  33. S. Ochi, “Mechanical properties of kenaf fibers and kenaf/PLA composites,” Mechanics of Materials, vol. 40, no. 4-5, pp. 446–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Shibata, Y. Cao, and I. Fukumoto, “Lightweight laminate composites made from kenaf and polypropylene fibres,” Polymer Testing, vol. 25, no. 2, pp. 142–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. B. F. Yousif, A. Shalwan, C. W. Chin, and K. C. Ming, “Flexural properties of treated and untreated kenaf/epoxy composites,” Materials and Design, vol. 40, pp. 378–385, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Deka, M. Misra, and A. Mohanty, “Renewable resource based “all green composites” from kenaf biofiber and poly(furfuryl alcohol) bioresin,” Industrial Crops and Products, vol. 41, pp. 94–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ramesh, K. Palanikumar, and K. H. Reddy, “Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites,” Procedia Engineering, vol. 51, pp. 745–750, 2013. View at Publisher · View at Google Scholar
  38. M. Ramesh, K. Palanikumar, and K. H. Reddy, “Comparative evaluation on properties of hybrid glass fiber-sisal/jute reinforced epoxy composites,” in Proceedings of the 3rd Nirma University International Conference on Chemical, Civil and Mechanical Engineering Tracks (NUiCONE '12), Nirma University, Ahmedabad, India, December 2012.
  39. K. Mylsamy and I. Rajendran, “The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites,” Materials and Design, vol. 32, no. 5, pp. 3076–3084, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. F. D. A. Silva, R. D. T. Filho, J. D. A. M. Filho, and E. D. M. R. Fairbairn, “Physical and mechanical properties of durable sisal fiber-cement composites,” Construction and Building Materials, vol. 24, no. 5, pp. 777–785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Ramesh, K. Palanikumar, and K. H. Reddy, “Mechanical property evaluation of sisal-jute-glass fiber reinforced polyester composites,” Composites B, no. 48, pp. 1–9, 2013. View at Publisher · View at Google Scholar
  42. A. Kalam, B. B. Sahari, Y. A. Khalid, and S. V. Wong, “Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/epoxy composites,” Composite Structures, vol. 71, no. 1, pp. 34–44, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Mamun, H.-P. Heim, D. H. Beg, T. S. Kim, and S. H. Ahmad, “PLA and PP composites with enzyme modified oil palm fibre: a comparative study,” Composites A, vol. 53, pp. 160–167, 2013. View at Publisher · View at Google Scholar
  44. M. M. Haque, M. Hasan, M. S. Islam, and M. E. Ali, “Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites,” Bioresource Technology, vol. 100, no. 20, pp. 4903–4906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Jawaid, H. P. S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane, “Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites,” Composites B, vol. 45, no. 1, pp. 619–624, 2013. View at Publisher · View at Google Scholar
  46. A. Alawar, A. M. Hamed, and K. Al-Kaabi, “Characterization of treated date palm tree fiber as composite reinforcement,” Composites B, vol. 40, no. 7, pp. 601–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, “Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites,” Composites A, vol. 41, no. 4, pp. 499–505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Z. P. Júnior, L. H. de Carvalho, V. M. Fonseca, S. N. Monteiro, and J. R. M. d'Almeida, “Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric composites,” Polymer Testing, vol. 23, no. 2, pp. 131–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Harish, D. P. Michael, A. Bensely, D. M. Lal, and A. Rajadurai, “Mechanical property evaluation of natural fiber coir composite,” Materials Characterization, vol. 60, no. 1, pp. 44–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Defoirdt, S. Biswas, L. D. Vriese et al., “Assessment of the tensile properties of coir, bamboo and jute fibre,” Composites A, vol. 41, no. 5, pp. 588–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. F. I. Romli, A. N. Alias, A. S. M. Rafie, and D. L. A. Abdul Majid, “Factorial study on the tensile strength of a coir fibre-reinforced epoxy composite,” AASRI Procedia, vol. 3, pp. 242–247, 2012. View at Publisher · View at Google Scholar
  52. C. Asasutjarit, S. Charoenvai, J. Hirunlabh, and J. Khedari, “Materials and mechanical properties of pretreated coir-based green composites,” Composites B, vol. 40, no. 7, pp. 633–637, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. N. G. Jústiz-Smith, G. J. Virgo, and V. E. Buchanan, “Potential of Jamaican banana, coconut coir and bagasse fibres as composite materials,” Materials Characterization, vol. 59, no. 9, pp. 1273–1278, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. M. Rahman and M. A. Khan, “Surface treatment of coir (Cocos nucifera) fibers and its influence on the fibers' physico-mechanical properties,” Composites Science and Technology, vol. 67, no. 11-12, pp. 2369–2376, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. V. M. Karbhari, J. W. Chin, D. Hunston et al., “Durability gap analysis for fiber-reinforced polymer composites in civil engineering,” Journal of Composites for Construction, vol. 7, no. 3, pp. 238–247, 2003. View at Publisher · View at Google Scholar