Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 137347, 9 pages
Research Article

Study on Microchannel Design and Burst Frequency Detection for Centrifugal Microfluidic System

1Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
2R&D Center for Membrane Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
3R&D Center for Mold and Molding Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan

Received 19 October 2012; Revised 2 January 2013; Accepted 2 January 2013

Academic Editor: Dachamir Hotza

Copyright © 2013 Yaw-Jen Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A centrifugal microfluidic system has been developed in this study, enabling the control and measurement of the burst frequency in order to manipulate the liquid. The radial microfluid chips with different microchannel dimensions were designed for simulation analyses and experimental verifications. The microfluidic flow in the microchannel was analyzed using software CFDRC, providing an accurate result compared with that from experiment. The results show that the design of the overflow microchannel can correctly keep the liquid volume with error as low as 5%. For mercurochrome, the burst frequency has an inverse proportion to the channel width, and the simulation results agree with the experimental results. For oil, however, the experimental and simulation results indicate that the relationship between the burst frequency and channel width is not obvious due to oil properties. Since the simulation approach can provide an accurate prediction of flow behavior in the microchannel, the design of radial microfluid chip and the control of burst frequency can be achieved effectively. A practical application to design the centrifugal microfluidic disc for blood typing test was also carried out in this study. The centrifugal microfluidic system can successfully control the spinning speed to achieve the result of adding reagents in a specific sequence.