Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 142450, 6 pages
http://dx.doi.org/10.1155/2013/142450
Research Article

Effect of Ar/CH4 Mixture Ratio on Properties of Ag/C:H Nanocomposite Prepared by DC Sputtering

1Department of Physics, North Tehran Branch, Islamic Azad University, Tehran 1667934783, Iran
2Department of Physics, Islamic Azad University, Karaj 31485313, Iran
3Plasma Physics Research Centre, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran

Received 8 June 2013; Accepted 20 July 2013

Academic Editor: Mahmood Ghoranneviss

Copyright © 2013 E. Mohsen Soltani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Urbanova, D. Pokorna, S. Bakardjieva et al., “IR laser-induced ablation of Ag in dielectric breakdown of gaseous hydrocarbons: simultaneous occurrence of metastable hcp and stable fcc Ag nanostructures in C:H shell,” Journal of Photochemistry and Photobiology A, vol. 213, no. 2-3, pp. 114–122, 2010. View at Publisher · View at Google Scholar
  2. M. V. Roldn, A. Frattini, O. de Sanctis, H. Troiani, and N. Pellegrini, “Characterization and applications of Ag nanoparticles in waveguides,” Applied Surface Science, vol. 254, no. 1, pp. 281–285, 2007. View at Publisher · View at Google Scholar
  3. H. Yin, T. Yamamoto, Y. Wada, and S. Yanagida, “Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 66–70, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. Zhu, L. Kai, and Y. Wang, “Synthesis and applications of hyperbranched polyesters-preparation and characterization of crystalline silver nanoparticles,” Materials Chemistry and Physics, vol. 96, no. 2-3, pp. 447–453, 2006. View at Publisher · View at Google Scholar
  5. A. S. Edelstein and R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol, UK, 1996.
  6. M. Maillard, S. Giorgo, and M. P. Pileni, “Silver nano disks,” Advanced Materials, vol. 14, no. 15, pp. 1084–1086, 2002. View at Google Scholar
  7. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” Journal of Chemical Physics, vol. 116, no. 15, pp. 6755–6759, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, and S. Minaian, “Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli,” Nanomedicine, vol. 3, no. 2, pp. 168–171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Applied and Environmental Microbiology, vol. 73, no. 6, pp. 1712–1720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25 of Springer Series in Materials Science, Springer, New York, NY, USA, 1995.
  11. D. D. Evanoff Jr. and G. Chumanov, “Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections,” Journal of Physical Chemistry B, vol. 108, no. 37, pp. 13957–13962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Craig and G. L. Harding, “Composition, optical properties and degradation modes of Cu/(graded metal-carbon) solar selective surfaces,” Thin Solid Films, vol. 101, no. 2, pp. 97–113, 1983. View at Google Scholar · View at Scopus
  13. Z. Tang, S. Liu, S. Dong, and E. Wang, “Electrochemical synthesis of Ag nanoparticles on functional carbon surfaces,” Journal of Electroanalytical Chemistry, vol. 502, no. 1-2, pp. 146–151, 2001. View at Publisher · View at Google Scholar
  14. M. Mazur, “Electrochemically prepared silver nanoflakes and nanowires,” Electrochemistry Communications, vol. 6, no. 4, pp. 400–403, 2004. View at Publisher · View at Google Scholar
  15. Z. Jian, Z. Xiang, and W. Yongchang, “Electrochemical synthesis and fluorescence spectrum properties of silver nanospheres,” Microelectronic Engineering, vol. 77, no. 1, pp. 58–62, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. H. Kim, D. K. Lee, and Y. S. Kang, “Synthesis and characterization of Ag and Ag-SiO2 nanoparticles,” Colloids and Surfaces A, vol. 257, pp. 273–276, 2005. View at Google Scholar
  17. C. H. Bae, S. H. Nam, and S. M. Park, “Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution,” Applied Surface Science, vol. 197-198, pp. 628–634, 2002. View at Publisher · View at Google Scholar
  18. K. Patel, S. Kapoor, D. P. Dave, and T. Mukherjee, “Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method,” Journal of Chemical Sciences, vol. 117, no. 4, pp. 311–315, 2005. View at Publisher · View at Google Scholar
  19. A. Y. Vinogradov, A. S. Abramov, K. E. Orlov, and A. S. Smirnov, “Low-temperature plasma-enhanced chemical vapor deposition of hard carbon films,” Vacuum, vol. 73, no. 1, pp. 131–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Rossnagel, “Sputter deposition,” in Opportunities for Innovation: Advanced Surface Engineering, W. D. Sproul and K. O. Legg, Eds., Technomic, Basel, Switzerland, 1995. View at Google Scholar
  21. E. Vaghri, Z. Khalaj, M. Ghoranneviss, and M. Borghei, “Characterization of diamond: like carbon films synthesized by dc-plasma enhanced chemical vapor deposition,” Journal of Fusion Energy, vol. 30, no. 5, pp. 447–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Mutsukura, “Photoluminescence and infra-red absorption of annealed a-CNx:H films,” Diamond and Related Materials, vol. 10, no. 3–7, pp. 1152–1155, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Kulisch, C. Popov, L. Zambov et al., “Investigation of the thermal stability of nitrogen-rich amorphous carbon nitride films,” Thin Solid Films, vol. 377-378, pp. 148–155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Wang, J. Wang, G. Zhang, L. Wang, and P. Yan, “Microstructure and tribology of TiC(Ag)/a-C:H nanocomposite coatings deposited by unbalanced magnetron sputtering,” Surface and Coatings Technology, vol. 206, no. 14, pp. 3299–3308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. V. Jagadeesh Chandra, P. Sreedhara Reddy, G. Mohan Rao, and S. Uthanna, “Growth and electrical characteristics of RF magnetron sputtered Ta2O5 films on Si,” Journal of Optoelectronic and Advanced Materials, vol. 1, no. 10, pp. 496–499, 2007. View at Google Scholar
  26. P. Marwoto, “Growth of europium-doped gallium oxide (Ga2O3:Eu) thin films deposited by homemade DC magnetron sputtering,” Journal of Theoretical and Applied Physics, vol. 6, pp. 17–20, 2012. View at Publisher · View at Google Scholar