Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 196382, 9 pages
http://dx.doi.org/10.1155/2013/196382
Research Article

Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

1State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, Shaanxi 710071, China
2Department of Physics, Qinghai Normal University, Xining, Qinghai 810008, China
3State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
4School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China

Received 18 August 2013; Accepted 9 October 2013

Academic Editor: Achilleas Vairis

Copyright © 2013 Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Maalekian, “Friction welding—critical assessment of literature,” Science and Technology of Welding and Joining, vol. 12, no. 8, pp. 738–759, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. M. Ham and I. Kostanic, Principles of Neurocomputing for Science and Engineering, McGraw-Hill, New York, NY ,USA, 1 edition, 2001.
  3. S. C. Juang, Y. S. Tarng, and H. R. Li, “A comparison between the back-propagation and counter-propagation networks in the modeling of the TIG welding process,” Journal of Materials Processing Technology, vol. 75, no. 1–3, pp. 54–62, 1998. View at Google Scholar · View at Scopus
  4. B. Chan, J. Pacey, and M. Bibby, “Modelling gas metal arc weld geometry using artificial neural network technology,” Canadian Metallurgical Quarterly, vol. 38, no. 1, pp. 43–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Y. Jeng, T. F. Mau, and S. M. Leu, “Prediction of laser butt joint welding parameters using back propagation and learning vector quantization networks,” Journal of Materials Processing Technology, vol. 99, no. 1, pp. 207–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. Nagesh and G. L. Datta, “Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks,” Journal of Materials Processing Technology, vol. 123, no. 2, pp. 303–312, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. K. H. Christensen, T. Sørensen, and J. K. Kristensen, “Gas metal arc welding of butt joint with varying gap width based on neural networks,” Science and Technology of Welding and Joining, vol. 10, no. 1, pp. 32–43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Ghanty, M. Vasudevan, D. P. Mukherjee et al., “Artificial neural network approach for estimating weld bead width and depth of penetration from infrared thermal image of weld pool,” Science and Technology of Welding and Joining, vol. 13, no. 4, pp. 395–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Vasudevan, V. Arunkumar, N. Chandrasekhar, and V. Maduraimuthu, “Genetic algorithm for optimisation of A-TIG welding process for modified 9Cr-1Mo steel,” Science and Technology of Welding and Joining, vol. 15, no. 2, pp. 117–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Casalino, S. J. Hu, and W. Hou, “Deformation prediction and quality evaluation of the gas metal arc welding butt weld,” Proceedings of the Institution of Mechanical Engineers B, vol. 217, no. 11, pp. 1615–1622, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Pal, S. K. Pal, and A. K. Samantaray, “Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals,” Journal of Materials Processing Technology, vol. 202, no. 1–3, pp. 464–474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Acherjee, S. Mondal, B. Tudu, and D. Misra, “Application of artificial neural network for predicting weld quality in laser transmission welding of thermoplastics,” Applied Soft Computing Journal, vol. 11, no. 2, pp. 2548–2555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Okuyucu, A. Kurt, and E. Arcaklioglu, “Artificial neural network application to the friction stir welding of aluminum plates,” Materials and Design, vol. 28, no. 1, pp. 78–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Sathiya, S. Aravindan, A. N. Haq, and K. Paneerselvam, “Optimization of friction welding parameters using evolutionary computational techniques,” Journal of Materials Processing Technology, vol. 209, no. 5, pp. 2576–2584, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. S. Kumaran, S. Muthukumaran, and S. Vinodh, “Optimization of friction welding of tube to tube plate using an external tool by hybrid approach,” Journal of Alloys and Compounds, vol. 509, no. 6, pp. 2758–2769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Boldsaikhan, E. M. Corwin, A. M. Logar, and W. J. Arbegast, “The use of neural network and discrete Fourier transform for real-time evaluation of friction stir welding,” Applied Soft Computing Journal, vol. 11, no. 8, pp. 4839–4846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Yang, S. N. Lou, Y. Zhou, J. M. Yan, and W. Q. Shi, “The dynamic recrystallization properties of superalloy GH4169 inertia friction welding joint,” Journal of Aeronautical Materials, vol. 22, no. 2, pp. 8–11, 2002 (Chinese). View at Google Scholar · View at Scopus
  18. A. Moal and E. Massoni, “Finite element simulation of the inertia welding of two similar parts,” Engineering Computations, vol. 12, no. 6, pp. 497–512, 1995. View at Google Scholar · View at Scopus
  19. W. Y. Li and F. F. Wang, “Modeling of continuous drive friction welding of mild steel,” Materials Science and Engineering A, vol. 528, no. 18, pp. 5921–5926, 2011. View at Publisher · View at Google Scholar
  20. L. W. Zhang, J. B. Pei, Q. Z. Zhang et al., “The coupled fem analysis of the transient temperature field during inertia friction welding of GH4169 alloy,” Acta Metallurgica Sinica, vol. 20, no. 4, pp. 301–306, 2007. View at Google Scholar
  21. M. S. Lewandowski and R. A. Overfelt, “High temperature deformation behavior of solid and semi-solid alloy 718,” Acta Materialia, vol. 47, no. 18, pp. 4695–4710, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. J. DeMange, V. Prakash, and J. M. Pereira, “Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy,” International Journal of Impact Engineering, vol. 36, no. 8, pp. 1027–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. P. Phaniraj and A. K. Lahiri, “The applicability of neural network model to predict flow stress for carbon steels,” Journal of Materials Processing Technology, vol. 141, no. 2, pp. 219–227, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Ates, M. Turker, and A. Kurt, “Effect of friction pressure on the properties of friction welded MA956 iron-based superalloy,” Materials and Design, vol. 28, no. 3, pp. 948–953, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Y. Li, T. Ma, and J. Li, “Numerical simulation of linear friction welding of titanium alloy: effects of processing parameters,” Materials & Design, vol. 31, no. 3, pp. 1497–1507, 2010. View at Publisher · View at Google Scholar