Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 290691, 6 pages
http://dx.doi.org/10.1155/2013/290691
Research Article

Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid

1College of Resources and Environmental, Chongqing University, Chongqing 400044, China
2College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China

Received 16 July 2013; Accepted 9 October 2013

Academic Editor: Xing Chen

Copyright © 2013 Song Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. L. Gulley and R. Tao, “Structures of a magnetorheological fluid,” International Journal of Modern Physics B, vol. 15, no. 6-7, pp. 851–858, 2001. View at Google Scholar · View at Scopus
  2. K. H. Song, B. J. Park, and H. J. Choi, “Effect of magnetic nanoparticle additive on characteristics of magnetorheological fluid,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4045–4048, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Huang, P. Wang, and G. Wang, “Squeezing force of the magnetorheological fluid isolating damper for centrifugal fan in nuclear power plant,” Science and Technology of Nuclear Installations, vol. 2012, Article ID 175703, 6 pages, 2012. View at Publisher · View at Google Scholar
  4. E. Dragašius, V. Grigas, D. Mažeika, and A. Šulginas, “Evaluation of the resistance force of magnetorheological fluid damper,” Journal of Vibroengineering, vol. 14, no. 1, pp. 1–6, 2012. View at Google Scholar · View at Scopus
  5. J. Huang, J. M. He, and J. Q. Zhang, “Viscoplastic flow of the MR fluid in a cylindrical valve,” Key Engineering Materials, vol. 274–276, no. 1, pp. 969–974, 2004. View at Google Scholar · View at Scopus
  6. A. M. Afonso, M. A. Alves, and F. T. Pinho, “Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels,” Journal of Non-Newtonian Fluid Mechanics, vol. 159, no. 1–3, pp. 50–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Kielan, P. Kowol, and Z. Pilch, “Conception of the electronic controlled magnetorheological clutch,” Przeglad Elektrotechniczny, vol. 87, no. 3, pp. 93–95, 2011. View at Google Scholar · View at Scopus
  8. J. Huang, J. Q. Zhang, Y. Yang, and Y. Q. Wei, “Analysis and design of a cylindrical magneto-rheological fluid brake,” Journal of Materials Processing Technology, vol. 129, no. 1–3, pp. 559–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Noma, H. Abe, T. Kikuchi, J. Furusho, and M. Naito, “Magnetorheology of colloidal dispersion containing Fe nanoparticles synthesized by the arc-plasma method,” Journal of Magnetism and Magnetic Materials, vol. 322, no. 13, pp. 1868–1871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Ekwebelam and H. See, “Microstructural investigations of the yielding behaviour of bidisperse magnetorheological fluids,” Rheologica Acta, vol. 48, no. 1, pp. 19–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. I. Jang, J. Seok, B. K. Min, and S. J. Lee, “Behavioral model for magnetorheological fluid under a magnetic field using Lekner summation method,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 9, pp. 1167–1176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Pacull, S. Gonçalves, Á. V. Delgado, J. D. G. Durán, and M. L. Jiménez, “Effect of polar interactions on the magnetorheology of silica-coated magnetite suspensions in oil media,” Journal of Colloid and Interface Science, vol. 337, no. 1, pp. 254–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. F. F. Fang, H. J. Choi, and M. S. Jhon, “Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function,” Colloids and Surfaces A, vol. 351, no. 1–3, pp. 46–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Chen, K. Jian, and X. Peng, “Cylindrical magnetorheological fluid variable transmission controlled by shape-memory alloy,” Science and Technology of Nuclear Installations, vol. 2012, Article ID 856082, 6 pages, 2012. View at Publisher · View at Google Scholar
  15. X. Z. Zhang, X. L. Gong, P. Q. Zhang, and Q. M. Wang, “Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids,” Journal of Applied Physics, vol. 96, no. 4, pp. 2359–2364, 2004. View at Publisher · View at Google Scholar · View at Scopus