Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 318185, 8 pages
http://dx.doi.org/10.1155/2013/318185
Research Article

Electrostrictive Energy Conversion of Polyurethane with Different Hard Segment Aggregations

1Department of Physics, Faculty of Science, Prince of Songkla University (PSU), Hat Yai 90112, Thailand
2Center of Excellence in Nanotechnology for Energy (CENE), PSU, Hat Yai 90112, Thailand

Received 2 March 2013; Accepted 26 August 2013

Academic Editor: Shi Xue Dou

Copyright © 2013 Pisan Sukwisute et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hayashida, K. Kanda, H. Yaku, J. Ando, and Y. Nakayama, “Development of an in vivo tissue-engineered, autologous heart valve (the biovalve): preparation of a prototype model,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 1, pp. 152–159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. E.-H. Kim, W.-R. Lee, S.-W. Myoung et al., “Characterization of waterborne polyurethane for ecofriendly functional floor plate,” Progress in Organic Coatings, vol. 67, no. 2, pp. 102–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. N.-J. Jo, D.-H. Lim, G.-M. Bark, H.-H. Chun, I.-W. Lee, and H. Park, “Polyurethane-based actuators with various polyols,” Journal of Materials Science and Technology, vol. 26, no. 8, pp. 763–768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Guyomar, P.-J. Cottinet, L. Lebrun et al., “The compressive electrical field electrostrictive coefficient M33 of electroactive polymer composites and its saturation versus electrical field, polymer thickness, frequency, and fillers,” Polymers for Advanced Technologies, vol. 23, no. 6, pp. 946–950, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Liu, Q. Zhang, and L. E. Cross, “Experimental investigation of electrostrictive polarization biased direct apparent piezoelectric properties in polyurethane elastomer under quasistatic conditions,” Journal of Applied Polymer Science, vol. 73, pp. 2603–2609, 1999. View at Google Scholar
  6. D. Guyomar, L. Lebrun, C. Putson, P.-J. Cottinet, B. Guiffard, and S. Muensit, “Electrostrictive energy conversion in polyurethane nanocomposites,” Journal of Applied Physics, vol. 106, no. 1, Article ID 014910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Putson, L. Lebrun, D. Guyomar et al., “Effects of copper filler sizes on the dielectric properties and the energy harvesting capability of nonpercolated polyurethane composites,” Journal of Applied Physics, vol. 109, no. 2, Article ID 024104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Lebrun, D. Guyomar, B. Guiffard, P.-J. Cottinet, and C. Putson, “The Characterisation of the harvesting capabilities of an electrostrictive polymer composite,” Sensors and Actuators A, vol. 153, no. 2, pp. 251–257, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P.-J. Cottinet, M. Lallart, D. Guyomar et al., “Analysis of ac-dc conversion for energy harvesting using an electrostrictive polymer P(VDF-TrFE-CFE),” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 1, pp. 30–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. S. Petrović, I. Javni, and G. Bánhegy, “Mechanical and dielectric properties of segmented polyurethane elastomers containing chemical crosslinks in the hard segment,” Journal of Polymer Science B, vol. 36, no. 2, pp. 237–251, 1998. View at Google Scholar · View at Scopus
  11. F. M. Guillot and E. Balizer, “Electrostrictive effect in polyurethanes,” Journal of Applied Polymer Science, vol. 89, no. 2, pp. 399–404, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Oprea, “Effect of the hard-segment structure on the dielectric relaxation of crosslinked polyurethanes,” Journal of Applied Polymer Science, vol. 119, no. 4, pp. 2196–2204, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. M. Tsai, T. L. Yu, and Y. H. Tseng, “Physical properties of crosslinked polyurethane,” Polymer International, vol. 47, pp. 445–450, 1998. View at Google Scholar
  14. T.-T. Hsieh, K.-H. Hsieh, G. P. Simon, C. Tiu, and H.-P. Hsu, “Effect of crosslinking density on the physical properties of interpenetrating polymer networks of polyurethane and 2-hydroxyethyl methacrylate-teminated polyurethane,” Journal of Polymer Research, vol. 5, no. 3, pp. 153–162, 1998. View at Google Scholar · View at Scopus
  15. R. S. McLean and B. B. Sauer, “Tapping-mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers,” Macromolecules, vol. 30, no. 26, pp. 8314–8317, 1997. View at Google Scholar · View at Scopus
  16. A. Eceiza, M. Larrañaga, K. de la Caba et al., “Structure-property relationships of thermoplastic polyurethane elastomers based on polycarbonate diols,” Journal of Applied Polymer Science, vol. 108, no. 5, pp. 3092–3103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. B. B. Sauer, R. S. Mclean, R. J. Gaymans, and M. C. J. E. Niesten, “Crystalline morphologies in segmented copolymers with hard segments of uniform length,” Journal of Polymer Science B, vol. 42, no. 9, pp. 1783–1792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. D. Menczel and R. B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley and Sons, Hoboken, NJ, USA, 2009.
  19. J. Galineau, B. Guiffard, L. Seveyrat, M. Lallart, and D. Guyomar, “Study and modeling of an electrostrictive polyurethane diaphragm loaded with conductive carbon black,” Sensors and Actuators A, vol. 189, pp. 117–124, 2013. View at Google Scholar
  20. K. Wongtimnoi, B. Guiffard, A. Bogner-Van de Moortèle, L. Seveyrat, C. Gauthier, and J.-Y. Cavaillé, “Improvement of electrostrictive properties of a polyether-based polyurethane elastomer filled with conductive carbon black,” Composites Science and Technology, vol. 71, no. 6, pp. 885–892, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Liu, K. L. Ren, H. F. Hofmann, and Q. Zhang, “Investigation of electrostrictive polymers for energy harvesting,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 12, pp. 2411–2417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. de Vasconcelos, R. R. Martins, M. O. Ferreira, M. R. Pereira, and J. L. C. Fonseca, “Rheology of polyurethane solutions with different solvents,” Polymer International, vol. 51, no. 1, pp. 69–74, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Eceiza, M. D. Martin, K. De La Caba et al., “Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties,” Polymer Engineering and Science, vol. 48, no. 2, pp. 297–306, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Saiani, W. A. Daunch, H. Verbeke, J.-W. Leenslag, and J. S. Higgins, “Origin of multiple melting endotherms in a high hard block content polyurethane. 1: thermodynamic investigation,” Macromolecules, vol. 34, no. 26, pp. 9059–9068, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Lapprand, F. Méchin, and J.-P. Pascault, “Synthesis and properties of self-crosslinkable thermoplastic polyurethanes,” Journal of Applied Polymer Science, vol. 105, no. 1, pp. 99–113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. T. K. Chen, T. S. Shieh, and J. Y. Chui, “Studies on the first DSC endotherm of polyurethane hard segment based on 4,4′-diphenylmethane diisocyanate and 1,4-butanediol,” Macromolecules, vol. 31, no. 4, pp. 1312–1320, 1998. View at Google Scholar · View at Scopus