Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 329549, 15 pages
http://dx.doi.org/10.1155/2013/329549
Research Article

Axial-Compressive Behavior, Including Kink-Band Formation and Propagation, of Single p-Phenylene Terephthalamide (PPTA) Fibers

1Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA
2Army Research Laboratory, Weapons & Materials Research Directorate, Proving Ground, Aberdeen, MD 21005-5069, USA

Received 21 May 2013; Revised 15 July 2013; Accepted 17 July 2013

Academic Editor: Gongnan Xie

Copyright © 2013 M. Grujicic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Grujicic, G. Arakere, T. He et al., “A ballistic material model for cross-plied unidirectional ultra-high molecular-weight polyethylene fiber-reinforced armor-grade composites,” Materials Science and Engineering A, vol. 498, no. 1-2, pp. 231–241, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Grujicic, G. Arakere, T. He, W. C. Bell, P. S. Glomski, and B. A. Cheeseman, “Multi-scale ballistic material modeling of cross-plied compliant composites,” Composites Part B, vol. 40, no. 6, pp. 468–482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Grujicic, P. S. Glomski, T. He, G. Arakere, W. C. Bell, and B. A. Cheeseman, “Material modeling and ballistic-resistance analysis of armor-grade composites reinforced with high-performance fibers,” Journal of Materials Engineering and Performance, vol. 18, no. 9, pp. 1169–1182, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Grujicic, W. C. Bell, G. Arakere, T. He, X. Xie, and B. A. Cheeseman, “Development of a meso-scale material model for ballistic fabric and its use in flexible-armor protection systems,” Journal of Materials Engineering and Performance, vol. 19, no. 1, pp. 22–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Grujicic, W. C. Bell, P. S. Glomski, B. Pandurangan, C.-F. Yen, and B. A. Cheeseman, “Filament-level modeling of aramid-based high-performance structural materials,” Journal of Materials Engineering and Performance, vol. 20, no. 8, pp. 1401–1413, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Grujicic, P. S. Glomski, B. Pandurangan, W. C. Bell, C.-F. Yen, and B. A. Cheeseman, “Multi-length scale computational derivation of Kevlar® yarn-level material model,” Journal of Materials Science, vol. 46, no. 14, pp. 4787–4802, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Grujicic, B. Pandurangan, J. S. Snipes, C.-F. Yen, and B. A. Cheeseman, “Multi-length scale enriched continuum-level material model for Kevlar-fiber reinforced polymer-matrix composites,” Journal of Materials Engineering and Performance, vol. 22, pp. 681–695, 2013. View at Google Scholar
  8. M. Grujicic, S. Ramaswami, J. S. Snipes et al., “Molecular-level computational investigation of mechanical transverse behavior of p-phenylene terephthalamide (PPTA) fibers,” Multidiscipline Modeling in Materials and Structures, 2013. View at Google Scholar
  9. R. Edmunds and M. A. Wadee, “On kink banding in individual PPTA fibres,” Composites Science and Technology, vol. 65, no. 7-8, pp. 1284–1298, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. G. Dobb, D. J. Johnson, and B. P. Saville, “Compressional behaviour of Kevlar fibres,” Polymer, vol. 22, no. 7, pp. 960–965, 1981. View at Google Scholar · View at Scopus
  11. M. Grujicic, G. Arakere, H. Nallagatla, W. C. Bell, and I. Haque, “Computational investigation of blast survivability and off-road performance of an up-armoured high-mobility multi-purpose wheeled vehicle,” Journal of Automobile Engineering, vol. 223, no. 3, pp. 301–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Grujicic, B. Pandurangan, U. Zecevic, K. L. Koudela, and B. A. Cheeseman, “Ballistic performance of alumina/S-2 glass-reinforced polymer-matrix composite hybrid lightweight armor against armor piercing (ap) and non-AP projectiles,” Multidiscipline Modeling in Materials and Structures, vol. 3, no. 3, pp. 287–312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Grujicic, B. Pandurangan, K. L. Koudela, and B. A. Cheeseman, “A computational analysis of the ballistic performance of light-weight hybrid composite armors,” Applied Surface Science, vol. 253, no. 2, pp. 730–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Grujicic, R. Yavari, S. Ramaswami, J. S. Snipes, C. -F. Yen, and B. A. Cheeseman, “Molecular-level study of the effect of prior axial compression/torsion on the axial-tensile strength of PPTA fibers,” Journal of Materials Engineering and Performance, 2013. View at Publisher · View at Google Scholar
  15. T. Takahashi, M. Miura, and K. Sakurai, “Deformation band studies of axially compressed poly(p-phenylene terephthalamide) fiber,” Journal of Applied Polymer Science, vol. 28, no. 2, pp. 579–586, 1983. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Deteresa, S. R. Allen, R. J. Farris, and R. S. Porter, “Compressive and torsional behaviour of Kevlar 49 fibre,” Journal of Materials Science, vol. 19, no. 1, pp. 57–72, 1984. View at Publisher · View at Google Scholar · View at Scopus
  17. 2013, http://accelrys.com/products/datasheets/materials-visualizer.pdf.
  18. M. Grujicic, B. Pandurangan, A. E. King, J. Runt, J. Tarter, and G. Dillon, “Multi-length scale modeling and analysis of microstructure evolution and mechanical properties in polyurea,” Journal of Materials Science, vol. 46, no. 6, pp. 1767–1779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Grujicic, J. S. Snipes, S. Ramaswami et al., “Coarse-grained molecular-level analysis of polyurea properties and shock-mitigation potential,” Journal of Materials Engineering and Performance, vol. 22, pp. 1964–1981, 2013. View at Google Scholar
  20. M. Grujicic, T. He, B. Pandurangan, F. R. Svingala, G. S. Settles, and M. J. Hargather, “Experimental characterization and material-model development for microphase-segregated polyurea: an overview,” Journal of Materials Engineering and Performance, vol. 21, no. 1, pp. 2–16, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. 2013, http://accelrys.com/products/datasheets/discover.pdf.
  22. J. A. Newell and M. T. Sagendorf, “Experimental verification of the end-effect Weibull model as a predictor of the tensile strength of Kevlar-29 (poly p-phenyleneterephthalamide) fibres at different gauge lengths,” High Performance Polymers, vol. 11, no. 3, pp. 297–305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. L. W. Steenbakkers and H. D. Wagner, “Elasticity and mechanical breakdown of Kevlar 149 aramid fibres by a probabilistic approach,” Journal of Materials Science Letters, vol. 7, no. 11, pp. 1209–1212, 1988. View at Publisher · View at Google Scholar · View at Scopus
  24. W. F. Knoff, “A modified weakest-link model for describing strength variability of Kevlar aramid fibres,” Journal of Materials Science, vol. 22, no. 3, pp. 1024–1030, 1987. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Grujicic, T. He, B. Pandurangan, J. Runt, J. Tarter, and G. Dillon, “Development and parameterization of a time-invariant (equilibrium) material model for segmented elastomeric polyureas,” Journal of Materials: Design and Applications, vol. 225, no. 3, pp. 182–194, 2011. View at Google Scholar
  26. M. Grujicic, T. He, and B. Pandurangan, “Development and parameterization of an equilibrium material model for segmented polyurea,” Multidiscipline Modeling in Materials and Structures, vol. 7, no. 2, pp. 96–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Grujicic, G. Arakere, W. C. Bell et al., “Reliability-based design optimization for durability of ground vehicle suspension system components,” Journal of Materials Engineering and Performance, vol. 19, no. 3, pp. 301–313, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Grujicic, W. C. Bell, B. Pandurangan, and T. He, “Blast-wave impact-mitigation capability of polyurea when used as helmet suspension pad material,” Materials and Design, vol. 31, pp. 4050–4065, 2010. View at Google Scholar
  29. M. Grujicic, B. P. d’Entremont, B. Pandurangan et al., “A study of the blast-induced brain white-matter damage and the associated diffuse axonal injury,” Multidiscipline Modeling in Materials and Structures, vol. 8, no. 2, pp. 213–245, 2012. View at Google Scholar