Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 382380, 6 pages
http://dx.doi.org/10.1155/2013/382380
Research Article

Structural, Morphological, and LPG Sensing Properties of Al-Doped ZnO Thin Film Prepared by SILAR

Department of Physics, The University of Burdwan, Golapbag, Burdwan, West Bengal 713104, India

Received 19 May 2013; Accepted 9 October 2013

Academic Editor: Jun Zhang

Copyright © 2013 Shampa Mondal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Jeong, B. N. Park, D.-G. Yoo, J.-H. Boo, and D. Jung, “Al-ZnO thin films as transparent conductive oxides: synthesis, characterization, and application tests,” Journal of the Korean Physical Society, vol. 50, no. 3, pp. 622–625, 2007. View at Google Scholar · View at Scopus
  2. K. V. Gurav, V. J. Fulari, U. M. Patil, C. D. Lokhande, and O.-S. Joo, “Room temperature soft chemical route for nanofibrous wurtzite ZnO thin film synthesis,” Applied Surface Science, vol. 256, no. 9, pp. 2680–2685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Baruwati, D. K. Kumar, and S. V. Manorama, “Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH,” Sensors and Actuators B, vol. 119, no. 2, pp. 676–682, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. T. M. Barnes, J. Leaf, C. Fry, and C. A. Wolden, “Room temperature chemical vapor deposition of c-axis ZnO,” Journal of Crystal Growth, vol. 274, no. 3-4, pp. 412–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Tewari and A. Bhattacharjee, “Structural, electrical and optical studies on spray-deposited aluminium-doped ZnO thin films,” Pramana, vol. 76, no. 1, pp. 153–163, 2011. View at Google Scholar · View at Scopus
  6. S. Y. Lee, Y. Li, J.-S. Lee et al., “Effects of chemical composition on the optical properties of Zn1-xCdxO thin films,” Applied Physics Letters, vol. 85, no. 2, pp. 218–220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. H. T. Cao, Z. L. Pei, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, “Preparation and characterization of Al and Mn doped ZnO (ZnO: (Al, Mn)) transparent conducting oxide films,” Journal of Solid State Chemistry, vol. 177, no. 4-5, pp. 1480–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Yim and C. Lee, “Optical properties of Al-doped ZnO thin films deposited by two different sputtering methods,” Crystal Research and Technology, vol. 41, no. 12, pp. 1198–1202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Yamaya, Y. Yamaki, H. Nakanishi, and S. Chichibu, “Use of a helicon-wave excited plasma for aluminum-doped ZnO thin-film sputtering,” Applied Physics Letters, vol. 72, no. 2, pp. 235–237, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. Shrestha, R. Ghimire, J. J. Nakarmi et al., “Properties of ZnO:Al films prepared by spin coating of aged precursor solution,” Bulletin of the Korean Chemical Society, vol. 31, no. 1, pp. 112–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H.-M. Zhou, D.-Q. Yi, Z.-M. Yu, L.-R. Xiao, and J. Li, “Preparation of aluminum doped zinc oxide films and the study of their microstructure, electrical and optical properties,” Thin Solid Films, vol. 515, no. 17, pp. 6909–6914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Sato, T. Minami, S. Takata, T. Miyata, and M. Ishii, “Low temperature preparation of transparent conducting ZnO:Al thin films by chemical beam deposition,” Thin Solid Films, vol. 236, no. 1-2, pp. 14–19, 1993. View at Google Scholar · View at Scopus
  13. W. Tang and D. C. Cameron, “Electrical resistivity of nanocrystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries,” Thin Solid Films, vol. 238, pp. 83–87.
  14. J. Mass, P. Bhattacharya, and R. S. Katiyar, “Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition,” Materials Science and Engineering B, vol. 103, no. 1, pp. 9–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. E. Rakhshani, “Al-doped zinc oxide films grown by successive chemical solution deposition,” Applied Physics A, vol. 92, no. 2, pp. 413–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Mitra, “Preparation of ZnO film on p-Si substrate and I-V characteristics of p-Si/n-ZnO,” Material Science Research India, vol. 8, pp. 197–202, 2011. View at Google Scholar
  17. P. Mitra and J. Khan, “Chemical deposition of ZnO films from ammonium zincate bath,” Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 279–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Mondal and P. Mitra, “Preparation of cadmium doped ZnO thin films by SILAR and their characterization,” Bulletin of Materials Science, vol. 35, pp. 751–757, 2012. View at Google Scholar
  19. S. S. Kale, R. S. Mane, H. M. Pathan, A. V. Shaikh, O.-S. Joo, and S.-H. Han, “Preparation and characterization of ZnTe thin films by SILAR method,” Applied Surface Science, vol. 253, no. 9, pp. 4335–4337, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Joint Committee on Powder Diffraction standards, “Inorganic,” B. Post, S. Weissmann, and H. F. McMurdie, Eds., Card No. 36-1451, International Centre for Diffraction Data, Swarthmore, Pa, USA, 1990. View at Google Scholar
  21. C. S. Prajapati and P. P. Sahay, “Growth, structure and optical characterization of Al-doped ZnO nanoparticle thin films,” Crystal Research and Technology, vol. 46, no. 10, pp. 1086–1092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. P. P. Sahay and R. K. Nath, “Al-doped zinc oxide thin films for liquid petroleum gas (LPG) sensors,” Sensors and Actuators B, vol. 133, no. 1, pp. 222–227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. M. Chou, L. G. Teoh, W. H. Lai, Y. H. Su, and M. H. Hon, “Thin film gas sensor for detection of ethanol,” Vapor Sensors, vol. 6, pp. 1420–1427, 2006. View at Google Scholar
  24. V. R. Shinde, T. P. Gujar, and C. D. Lokhande, “LPG sensing properties of ZnO films prepared by spray pyrolysis method: effect of molarity of precursor solution,” Sensors and Actuators B, vol. 120, no. 2, pp. 551–559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Simpson and J. F. Cordaro, “Characterization of deep levels in zinc oxide,” Journal of Applied Physics, vol. 63, no. 5, pp. 1781–1783, 1988. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Heiland and D. Kohl, “Chemical sensor technology,” in Ceramics for Chemical Sensing, T. Seiyama, Ed., vol. 1, p. 15, KodanshaSpringer, Tokyo, Japan, 1988. View at Google Scholar