Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 412601, 7 pages
http://dx.doi.org/10.1155/2013/412601
Research Article

Fracture Energy Estimation of DCB Specimens Made of Glass/Epoxy: An Experimental Study

1Faculty of Mechanical Engineering, Sardar Raja College of Engineering, Alangulam, Tirunelveli 627808, India
2Faculty of Mechanical Engineering, Government College of Engineering, Tirunelveli 627007, India

Received 22 May 2013; Accepted 20 June 2013

Academic Editor: Jacques Huot

Copyright © 2013 V. Alfred Franklin and T. Christopher. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Nageswara Rao and A. R. Acharya, “Evaluation of fracture energy, GIc using a double cantilever beam fibre composite specimen,” Engineering Fracture Mechanics, vol. 51, no. 2, pp. 317–322, 1995. View at Google Scholar · View at Scopus
  2. M. F. S. F. de Moura, R. D. S. G. Campilho, A. M. Amaro, and P. N. B. Reis, “Interlaminar and intralaminar fracture characterization of composites under mode I loading,” Composite Structures, vol. 92, no. 1, pp. 144–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. D. F. Devitt, R. A. Schapery, and W. L. Bradley, “A method for determining mode I delamination fracture toughness of elastic and viscoelastic composite materials,” Journal of Composite Materials, vol. 14, pp. 270–285, 1980. View at Google Scholar · View at Scopus
  4. J. M. Whitney, C. E. Browning, and W. Hoogsteden, “A double cantilever beam test for characterizing mode I delamination of composite materials,” Journal of Reinforced Plastics and Composites, vol. 1, no. 4, pp. 297–313, 1982. View at Google Scholar · View at Scopus
  5. R. A. Jurf and R. B. Pipes, “Interlaminar fracture of composite materials,” Journal of Composite Materials, vol. 16, no. 5, pp. 386–394, 1982. View at Google Scholar · View at Scopus
  6. D. J. Nicholls and J. P. Gallagher, “Determination of GIc in angle-ply composites using a cantilever beam test method,” Journal of Reinforced Plastics and Composites, vol. 2, no. 1, pp. 2–17, 1983. View at Google Scholar · View at Scopus
  7. P. E. Keary, L. B. Ilcewicz, C. Shaar, and J. Trostle, “Mode I interlaminar fracture toughness of composites using slender double cantilevered beam specimens,” Journal of Composite Materials, vol. 19, no. 2, pp. 154–177, 1985. View at Google Scholar · View at Scopus
  8. E. F. Rybicki, T. D. Hernandez Jr., J. E. Deibler, R. C. Knight, and S. S. Vinson, “Mode I and mixed mode energy release rate values for delamination of graphite/epoxy test specimens,” Journal of Composite Materials, vol. 21, no. 2, pp. 105–123, 1987. View at Google Scholar · View at Scopus
  9. J. G. Williams, “Large displacement and end block effects in the DCB interlaminar test in modes I and II,” Journal of Composite Materials, vol. 21, no. 4, pp. 330–347, 1987. View at Google Scholar · View at Scopus
  10. S. Hashemi, A. J. Kinloch, and J. G. Williams, “Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites,” Journal of Materials Science Letters, vol. 8, no. 2, pp. 125–129, 1989. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Shokrieh and M. Heidari-Rarani, “Effect of stacking sequence on R-curve behavior of glass/epoxy DCB laminates with 0°//0° crack interface,” Materials Science and Engineering A, vol. 529, no. 1, pp. 265–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. ASTM Standard D5528-94a. Standard test method for mode I interlaminar fracture toughness of unidirectional continuous fiber reinforced polymer matrix composites, Philadelphia, Pa, USA, 1994.
  13. V. Tamuzs, S. Tarasovs, and U. Vilks, “Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens,” Engineering Fracture Mechanics, vol. 68, no. 5, pp. 513–525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. B. N. Rao and A. R. Acharya, “Maximum load at the initiation of delamination growth in a double cantilever beam specimen,” Zeitschrift fuer Metallkunde, vol. 86, no. 6, pp. 428–433, 1995. View at Google Scholar · View at Scopus
  15. R. A. Naik, J. H. Crews Jr, and K. N. Shivakumar, “Effects of T-tabs and large deflections in DCB specimen tests,” in Composite Materials, Fatigue and Fracture, T. K. O’Brien, Ed., vol. 3 of ASTM STP 1110, pp. 169–186, American Society For Testing and Materials, 1991. View at Google Scholar
  16. J. Zhou, T. He, B. Li, W. Liu, and T. Chen, “A study of mode I delamination resistance of a thermoplastic composite,” Composites Science and Technology, vol. 45, no. 2, pp. 173–179, 1992. View at Google Scholar · View at Scopus
  17. S. Hashemi, A. J. Kinloch, and J. G. Williams, “Mechanics and mechanisms of delamination in a poly(ether sulphone)-Fibre composite,” Composites Science and Technology, vol. 37, no. 4, pp. 429–462, 1990. View at Google Scholar · View at Scopus
  18. L.-Y. Xu and C.-H. Kou, “Effect of interfacial interleaf to the interlaminar fracture and intralaminar fracture of a new BMI matrix composites system,” Journal of Reinforced Plastics and Composites, vol. 13, no. 6, pp. 509–540, 1994. View at Google Scholar · View at Scopus
  19. L. Ye, “Evaluation of Mode-I interlaminar fracture toughness for fiber-reinforced composite materials,” Composites Science and Technology, vol. 43, no. 1, pp. 49–54, 1992. View at Google Scholar · View at Scopus
  20. V. Q. Bui, E. Marechal, and H. Nguyen-Dang, “Imperfect interlaminar interfaces in laminated composites: delamination with the R-curve effect,” Composites Science and Technology, vol. 60, no. 14, pp. 2619–2630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. J. W. Gillespie Jr, L. A. Carlsson, R. B. Pipes, R. Rothschilds, B. Trethewey, and A. Smiley, “Delamination Growth in Composite Materials,” NASA-CR 178066, 1986. View at Google Scholar
  22. A. Szekrényes and J. Uj, “Advanced beam model for fiber-bridging in unidirectional composite double-cantilever beam specimens,” Engineering Fracture Mechanics, vol. 72, no. 17, pp. 2686–2702, 2005. View at Publisher · View at Google Scholar · View at Scopus