About this Journal Submit a Manuscript Table of Contents
Advances in Materials Science and Engineering
Volume 2013 (2013), Article ID 493867, 8 pages
Research Article

Effect of Cobalt Fillers on Polyurethane Segmentations Investigated by Synchrotron Small Angle X-Ray Scattering

1Magnet Laboratory, Division of Physics, School of Science, Walailak University, Nakhon Si Thammarat 80161, Thailand
2Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand

Received 25 October 2012; Revised 22 December 2012; Accepted 26 December 2012

Academic Editor: Philip Harrison

Copyright © 2013 Krit Koyvanich et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Shokrollahi and K. Janghorban, “Soft magnetic composite materials (SMCs),” Journal of Materials Processing Technology, vol. 189, no. 1–3, pp. 1–12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Sirisathitkul, P. Saramolee, P. Lertsuriwat, and C. Pholnak, “Influence of cobalt fillers on electromagnetic and thermal properties of polyurethanes,” Science and Engineering of Composite Materials, vol. 17, no. 2, pp. 111–118, 2010. View at Google Scholar · View at Scopus
  3. A. F. Craievich, “Synchrotron SAXS studied of nanostructureed materials and colloidal solutions: a review,” Materials Research, vol. 5, no. 1, pp. 1–11, 2002. View at Google Scholar
  4. P. R. Laity, J. E. Taylor, S. S. Wong et al., “A review of small-angle scattering models for random segmented poly(ether-urethane) copolymers,” Polymer, vol. 45, no. 21, pp. 7273–7291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Hernandez, J. Weksler, A. Padsalgikar et al., “A comparison of phase organization of model segmented polyurethanes with different intersegment compatibilities,” Macromolecules, vol. 41, no. 24, pp. 9767–9776, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. R. D. Silva, A. D. Silva-Cunha Jr., F. Behar-Cohen, E. Ayres, and R. L. Oréfice, “Biodegradable polyurethane nanocomposites containing dexamethason for ocular route,” Material Science and Engineering C, vol. 31, no. 2, pp. 414–422, 2011. View at Google Scholar
  7. F. Buffa, G. A. Abraham, B. P. Grady, and D. Resasco, “Effect of nanotube functionalization on the properties of single-walled carbon nanotube/polyurethane composites,” Journal of Polymer Science B, vol. 45, no. 4, pp. 490–501, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Ayres, R. L. Oréfice, and M. I. Yoshida, “Phase morphology of hydrolysable polyurethanes derived from aqueous dispersions,” European Polymer Journal, vol. 43, no. 8, pp. 3510–3521, 2007. View at Publisher · View at Google Scholar
  9. Z. S. Petrović, Y. J. Cho, I. Javni et al., “Effect of silica nanoparticles on morphology of segmented polyurethanes,” Polymer, vol. 45, no. 12, pp. 4285–4295, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. S. Sun, U. S. Jeng, Y. S. Huang, K. S. Liang, T. L. Lin, and C. S. Tsao, “Complementary SAXS and SANS for structural characteristics of a polyurethethane elastomer of low hard-segment content,” Physica B, vol. 385-386, no. 1, pp. 650–652, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Soontaranon and S. Rugmai, “Small angle X-ray scattering at siam photon laboratory,” Chinese Journal of Physics, vol. 50, no. 2, pp. 204–210, 2012. View at Google Scholar