Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 608350, 4 pages
http://dx.doi.org/10.1155/2013/608350
Research Article

Antibacterial Characteristics of Lotus-Type Porous Copper

1Department of Metallurgical Engineering, Inha University, Incheon 402-751, Republic of Korea
2Light Metal Division, Korea Institute of Materials Science, Changwon 642-831, Republic of Korea
3Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
4Institute of Research & Technology, Daechang Co., Ltd., Siheung 429-794, Republic of Korea

Received 11 October 2013; Accepted 26 November 2013

Academic Editor: Nikolaos Michailidis

Copyright © 2013 Jin-Soo Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. L. Droste, Theory and Practice of Water and Waste Water Treatment, John Wiley & Sons, New York, NY, USA, 1997.
  2. S. D. Richardson, M. J. Plewa, E. D. Wagner, R. Schoeny, and D. M. DeMarini, “Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research,” Mutation Research, vol. 636, no. 1–3, pp. 178–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Shen, L. Feng, H. Feng, Z. Kong, and M. Guo, “Ultrafine silver(II) oxide particles decorated porous ceramic composites for water treatment,” Chemical Engineering Journal, vol. 175, no. 1, pp. 592–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Chen, Y. Guo, S. Chen, Z. Ge, H. Yang, and J. Tang, “Fabrication of Cu/TiO2 nanocomposite: toward and enhanced antibacterial performance in the absence of light,” Materials Letters, vol. 83, pp. 154–157, 2012. View at Google Scholar
  5. H. Jing, Z. Yu, and L. Li, “Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials,” Journal of Biomedical Materials Research A, vol. 87, no. 1, pp. 33–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Nakajima, “Fabrication, properties and application of porous metals with directional pores,” Progress in Materials Science, vol. 52, no. 7, pp. 1091–1173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Shapovalov and L. Boyko, “Gasar—a new class of porous materials,” Advanced Engineering Materials, vol. 6, no. 6, pp. 407–410, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. K. Hyun and H. Nakajima, “Effect of solidification velocity on pore morphology of lotus-type porous copper fabricated by unidirectional solidification,” Materials Letters, vol. 57, no. 21, pp. 3149–3154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kashihara, S. K. Hyun, H. Yonetani, T. Kobi, and H. Nakajima, “Fabrication of lotus-type porous carbon steel by unidirectional solidification in nitrogen atmosphere,” Scripta Materialia, vol. 54, no. 4, pp. 509–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Park, S. K. Hyun, S. Suzuki, and H. Nakajima, “Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by a continuous casting technique,” Acta Materialia, vol. 55, no. 16, pp. 5646–5654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chiba, T. Ogushi, H. Nakajima, and T. Ikeda, “Heat transfer capacity of lotus-type porous copper heat sink,” JSME International Journal B, vol. 47, no. 3, pp. 516–521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. J. Varkey, “Antibacterial properties of some metals and alloys in combating coliforms in contaminated water,” Scientific Research and Essays, vol. 5, no. 24, pp. 3834–3839, 2010. View at Google Scholar · View at Scopus
  13. K. Liao, K. Ou, H. Cheng, C. Lin, and P. Peng, “Effect of silver on antibacterial properties of stainless steel,” Applied Surface Science, vol. 256, no. 11, pp. 3642–3646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Yokota, M. Tochihara, and M. Ohta, “Silver dispersed stainless steel with antibacterial property,” Kawasaki Steel Technical Report, no. 46, pp. 37–41, 2002. View at Google Scholar · View at Scopus
  15. K. H. W. Seah, R. Thampuran, and S. H. Teoh, “The influence of pore morphology on corrosion,” Corrosion Science, vol. 40, no. 4-5, pp. 547–556, 1998. View at Publisher · View at Google Scholar · View at Scopus