Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 802639, 7 pages
http://dx.doi.org/10.1155/2013/802639
Research Article

Dependence of Microcrack Behavior in Wood on Moisture Content during Drying

1Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
2Division of Sustainable Bioresources Science, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
3Division of Forest Science, Faculty of Agriculture, Miyazaki University, Miyazaki 889-2192, Japan

Received 15 May 2013; Revised 10 July 2013; Accepted 7 August 2013

Academic Editor: Jeffrey Glass

Copyright © 2013 Hiroyuki Yamamoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. J. Morén, “Heating and conditioning by steaming during low temperature drying,” in Proceedings of the 4th International IUFRO Wood Drying Conference, pp. 341–348, Rotorua, New Zealand, August 1994.
  2. A. Hanhijärvi, P. Wahl, J. Räsänen, and R. Silvennoinen, “Observation of development of microcracks on wood surface caused by drying stresses,” Holzforschung, vol. 57, no. 5, pp. 561–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Hukka and V. Tarvainen, Höyryn käyttö sahatavaran kuivauksessa, VTT Julkaisuja, 1997.
  4. S. Avramidis and J. F. G. Mackay, “Development of kiln schedules for 4-inch by 4-inch pacific coast hemlock,” Forest Products Journal, vol. 38, no. 9, pp. 45–48, 1988. View at Google Scholar · View at Scopus
  5. P. Perré, “The role of wood anatomy in the drying of wood: ‘great oaks from little acorns grow’,” in Proceedings of the 8th International IUFRO Wood Drying Conference, pp. 11–24, Brasov, Romania, August 2003.
  6. H. Sakagami, J. Matsumura, and K. Oda, “Shrinkage of tracheid cells with desorption visualized by confocal laser scanning microscopy,” IAWA Journal, vol. 28, no. 1, pp. 29–37, 2007. View at Google Scholar · View at Scopus
  7. H. Sakagami, K. Tsuda, J. Matsumura, and K. Oda, “Microcracks occurring during drying visualized by confocal laser scanning microscopy,” IAWA Journal, vol. 30, no. 2, pp. 179–187, 2009. View at Google Scholar · View at Scopus
  8. H. Sakagami, J. Matsumura, and K. Oda, “In situ visualization of hardwood microcracks occurring during drying,” Journal of Wood Science, vol. 55, no. 5, pp. 323–328, 2009. View at Publisher · View at Google Scholar
  9. A. J. Stamm, “The fiber-saturation point of wood as obtained from electrical conductivity measurements,” Industrial and Engineering Chemistry, vol. 1, no. 2, pp. 94–97, 1929. View at Google Scholar · View at Scopus
  10. A. J. Stamm, “An electrical conductivity method for determining the moisture content of wood,” Industrial and Engineering Chemistry, vol. 2, no. 3, pp. 240–244, 1930. View at Google Scholar · View at Scopus
  11. N. Kuroda and J. Tsutsumi, “Anisotropic behavior of electrical conduction in wood,” Mokuzai Gakkaishi, vol. 28, pp. 25–30, 1982 (Japanese). View at Google Scholar
  12. T. M. Nakanishi, T. Okano, I. Karakama, T. Ishihara, and M. Matsubayashi, “Three dimensional imaging of moisture in wood disk by neutron beam during drying process,” Holzforschung, vol. 52, no. 6, pp. 673–676, 1998. View at Google Scholar · View at Scopus
  13. T. Tanaka, S. Avramidis, and S. Shida, “Evaluation of moisture content distribution in wood by soft X-ray imaging,” Journal of Wood Science, vol. 55, no. 1, pp. 69–73, 2009. View at Publisher · View at Google Scholar · View at Scopus