Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 872019, 8 pages
http://dx.doi.org/10.1155/2013/872019
Research Article

The Controlled Synthesis of Carbon Tubes and Rods by Template-Assisted Twin Polymerization

1Department of Polymer Chemistry, Technische Universität Chemnitz, Straße der Nationen 62, 09111 Chemnitz, Germany
2Institute of Physics, Technische Universität Chemnitz, Reichenhainer Straße 70, 09107 Chemnitz, Germany
3Department of Chemistry and Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany

Received 8 May 2013; Accepted 5 October 2013

Academic Editor: Luigi Nicolais

Copyright © 2013 Falko Böttger-Hiller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M. M. Titirici, “Engineering carbon materials from the hydrothermal carbonization process of biomass,” Advanced Materials, vol. 22, no. 7, pp. 813–828, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Su, X. S. Zhao, Y. Wang, L. Wang, and J. Y. Lee, “Hollow carbon spheres with a controllable shell structure,” Journal of Materials Chemistry, vol. 16, no. 45, pp. 4413–4419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. N. Hoheisel, S. Schrettl, R. Szilluweit, and H. Frauenrath, “Nanostructured carbonaceous materials from molecular precursors,” Angewandte Chemie, vol. 49, no. 37, pp. 6496–6515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. H. Joo, S. J. Choi, I. Oh et al., “Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles,” Nature, vol. 412, pp. 169–172, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. G. S. Chai, S. B. Yoon, J. H. Kim, and J. S. Yu, “Spherical carbon capsules with hollow macroporous core and mesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell,” Chemical Communications, no. 23, pp. 2766–2767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Ikeda, S. Ishino, T. Harada et al., “Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst,” Angewandte Chemie—International Edition, vol. 45, no. 42, pp. 7063–7066, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. T. Lee, Y. S. Jung, and S. M. Oh, “Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries,” Journal of the American Chemical Society, vol. 125, no. 19, pp. 5652–5653, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Zhang, X. Qin, G. R. Li, and X. P. Gao, “Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres,” Energy and Environmental Science, vol. 3, no. 10, pp. 1531–1537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Tamai, T. Sumi, and H. Yasuda, “Preparation and characteristics of fine hollow carbon particles,” Journal of Colloid and Interface Science, vol. 177, no. 2, pp. 325–328, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Han, S. Kim, H. Lim et al., “New nanoporous carbon materials with high adsorption capacity and rapid adsorption kinetics for removing humic acids,” Microporous and Mesoporous Materials, vol. 58, no. 2, pp. 131–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Shen, Y. Bando, C. Zhi, and D. Golberg, “Tubular carbon nano-/microstructures synthesized from graphite powders by an in situ template process,” Journal of Physical Chemistry B, vol. 110, no. 22, pp. 10714–10719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Gherghel, C. Kübel, G. N. Lieser, H. J. Räder, and K. Müllen, “Pyrolysis in the mesophase: a chemist's approach toward preparing carbon nano- and microparticles,” Journal of the American Chemical Society, vol. 124, no. 44, pp. 13130–13138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Xiong, Y. Xie, Z. Li, C. Wu, and R. Zhang, “A novel approach to carbon hollow spheres and vessels from CCl4 at low temperatures,” Chemical Communications, vol. 9, no. 7, pp. 904–905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Vander Wal, “Flame synthesis of Ni-catalyzed nanofibers,” Carbon, vol. 40, no. 12, pp. 2101–2107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Kubo, I. Tan, R. J. White, M. Antonietti, and M. M. Titirici, “Template synthesis of carbonaceous tubular nanostructures with tunable surface properties,” Chemistry of Materials, vol. 22, no. 24, pp. 6590–6597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Spange, P. Kempe, A. Seifert et al., “Nanocomposites with structure domains of 0.5 to 3 nm by polymerization of silicon spiro compounds,” Angewandte Chemie—International Edition, vol. 48, no. 44, pp. 8254–8258, 2009. View at Publisher · View at Google Scholar
  17. L. Matéjka, K. Dusek, J. Plestil, J. Kriz, and L. Ldnicky, “Formation and structure of the epoxy-silica hybrids,” Polymer, vol. 40, no. 1, pp. 171–181, 1998. View at Publisher · View at Google Scholar
  18. Y. Wei, D. Jin, C. Yang, and G. Wei, “A fast convenient method to prepare hybrid sol-gel materials with low volume-shrinkages,” Journal of Sol-Gel Science and Technology, vol. 7, no. 3, pp. 191–201, 1996. View at Publisher · View at Google Scholar
  19. M. E. Ellsworth and B. M. Novak, “Mutually interpenetrating inorganic-organic networks new routes into nonshrinking sol-gel composite materials,” Journal of the American Chemical Society, vol. 113, no. 7, pp. 2756–2758, 1991. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Chemtob, D. L. Versace, C. Belon, C. Croutxé-Barghorn, and S. Rigolet, “Concomitant organic-inorganic UV-curing catalyzed by photoacids,” Macromolecules, vol. 41, no. 20, pp. 7390–7398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Uygun, W. D. Cook, C. Moorhoff et al., “Photopolymerization kinetics and dynamic mechanical properties of silanes hydrolyzed without evolution of byproducts. Tetrakis[(methacryloyloxy)ethoxy] silane-diethylene glycol dimethacrylate,” Macromolecules, vol. 44, no. 7, pp. 1792–1800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Grund, P. Kempe, G. Baumann, A. Seifert, and S. Spange, “Nanocomposites prepared by twin polymerization of a single-source monomer,” Angewandte Chemie—International Edition, vol. 46, no. 4, pp. 628–632, 2007. View at Publisher · View at Google Scholar
  23. A. Mehner, T. Rüffer, H. Lang, A. Pohlers, W. Hoyer, and S. Spange, “Synthesis of nanosized TiO2 by cationic polymerization of (μ4-oxido)-hexakis(μ-furfuryloxo)-octakis(furfuryloxo)-tetra-titanium,” Advanced Materials, vol. 20, no. 21, pp. 4113–4117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Spange and S. Grund, “Nanostructured organic-inorganic composite materials by twin polymerization of hybrid monomers,” Advanced Materials, vol. 21, no. 20, pp. 2111–2116, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Böttger-Hiller, R. Lungwitz, A. Seifert et al., “Nanoscale tungsten trioxide synthesized by in situ twin polymerization,” Angewandte Chemie—International Edition, vol. 48, no. 47, pp. 8878–8881, 2009. View at Publisher · View at Google Scholar
  26. G. Horvath and K. Kawazoe, “Method for calculation of effective pore size distribution in molecular sieve carbon,” Journal of Chemical Engineering of Japan, vol. 16, no. 6, pp. 470–475, 1983. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Böttger-Hiller, P. Kempe, G. Cox et al., “Twin Polymerization at spherical hard-templates: an approach to size adjustable carbon hollow spheres with micro- or mesoporous shells,” Angewandte Chemie—International Edition, vol. 52, no. 23, pp. 6088–6091, 2013. View at Publisher · View at Google Scholar
  28. P. Debye and A. M. Bueche, “Scattering by an inhomogeneous solid,” Journal of Applied Physics, vol. 20, no. 6, pp. 518–525, 1949. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Glatter and O. Kratky, Small Angle X-Ray Scattering, Academic Press, London, UK, 1982.
  30. J. Seifert and G. Emig, “Mikrostrukturuntersuchungen an porösen Feststoffen durch Physisorptionsmessungen,” Chemie Ingenieur Technik, vol. 59, no. 6, pp. 475–484, 1987. View at Publisher · View at Google Scholar