Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2013, Article ID 937094, 5 pages
http://dx.doi.org/10.1155/2013/937094
Research Article

Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240, China

Received 16 August 2013; Revised 11 November 2013; Accepted 11 November 2013

Academic Editor: Caner Simsir

Copyright © 2013 Dingjian Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Nguyen, D. C. Weckman, D. A. Johnson, and H. W. Kerr, “High speed fusion weld bead defects,” Science and Technology of Welding and Joining, vol. 11, no. 6, pp. 618–633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Hiroshi, M. Tomokazu, and N. Shigeo, “Technical development of advanced 3-electrode MAG high speed horizontal fillet welding process,” IIW Doc. No. XII- 1898-06:92.
  3. Y. Ruan, X. M. Qiu, W. B. Gong, D. Q. Sun, and Y. P. Li, “Mechanical properties and microstructures of 6082-T6 joint welded by twin wire metal inert gas arc welding with the SiO2 flux,” Materials and Design, vol. 35, pp. 20–24, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ueyama, T. Ohnawa, M. Tanaka, and K. Nakata, “Occurrence of arc interaction in tandem pulsed gas metal arc welding,” Science and Technology of Welding and Joining, vol. 12, no. 6, pp. 523–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. V. Kiran, B. Basu, A. K. Shah, S. Mishra, and A. De, “Probing influence of welding current on weld quality in two wire tandem submerged arc welding of HSLA steel,” Science and Technology of Welding and Joining, vol. 15, no. 2, pp. 111–116, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. P. Reis, A. Scotti, J. Norrish, and D. Cuiuri, “Investigation on welding arc interruptions in the presence of magnetic fields: welding current influence,” IEEE Transactions on Plasma Science, vol. 40, no. 3, pp. 870–876, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Scotti, C. O. Morais, and L. O. Vilarinho, “The effect of out-of-phase pulsing on metal transfer in twin-wire GMA welding at high current level,” Welding Journal, vol. 85, no. 10, pp. 225–230, 2006. View at Google Scholar · View at Scopus
  8. T. Ueyama and T. Ohnawa, “Occurrence of arc interference and interruption in TANDEM pulsed GMA welding,” IIW Doc, No, XII-1883-06.
  9. T. Ueyama, T. Ohnawa, M. Tanaka, and K. Nakata, “Effects of torch configuration and welding current on weld bead formation in high speed tandem pulsed gas metal arc welding of steel sheets,” Science and Technology of Welding and Joining, vol. 10, no. 6, pp. 750–759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Yudodibroto, M. Hermans, and I. Richardson, “Process stability analysis during TANDEM wire arc welding,” IIW Doc.XII-1876-06, 2006.
  11. T. Ueyama, T. Ohnawa, T. Uezono, M. Tanaka, M. Ushio, and K. Nakata, “Solution to problems of arc interruption and stable arc length control in TANDEM pulsed GMA welding,” Welding International, vol. 20, no. 8, pp. 602–611, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Tichella, G. Jelmorini, and V. Heuvel, “Droplet temperature measurement in arc welding,” IlWDoc,212-411-77, 1977.
  13. A. Lesnewich, “Control of melting rate and metal transfer in gas-shielded metal-arc welding part I-Contrlo of electrode melting rate,” Welding Journal, no. 8, pp. 343–345, 1958. View at Google Scholar