Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 170148, 7 pages
http://dx.doi.org/10.1155/2014/170148
Research Article

Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite

1School of Material Science and Technology, China University of Geosciences, Beijing 100083, China
2Geosciences Department, University of Wisconsin-Parkside, Kenosha, WI 53144, USA

Received 6 March 2014; Accepted 12 May 2014; Published 11 June 2014

Academic Editor: Hanlie Hong

Copyright © 2014 Ranfang Zuo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Choi, S. R. Al-Abed, D. D. Dionysiou, E. Stathatos, and P. Lianos, “TiO2-based advanced oxidation nanotechnologies for water purification and reuse,” Sustainability Science and Engineering, vol. 8, pp. 229–254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. D.-J. Kim, H.-C. Pham, D.-W. Park, and K.-S. Kim, “Preparation of TiO2 thin films on polypropylene beads by a rotating PCVD process and its application to organic pollutant removal,” Chemical Engineering Journal, vol. 167, no. 1, pp. 308–313, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Mekprasart and W. Pecharapa, “Synthesis and characterization of nitrogen-doped TiO2 and its photo-catalytic activity enhancement under visible light,” in Proceedings of the Eco-Energy and Materials Science and Engineering Symposium, vol. 9, pp. 509–514, 2011.
  4. C. Suwanchawalit and S. Wongnawa, “Influence of calcination on the microstructures and photocatalytic activity of potassium oxalate-doped TiO2 powders,” Applied Catalysis A, vol. 338, no. 1-2, pp. 87–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Huo, Y. Yan, S. Li, H. Li, and W. Huang, “Preparation of poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics,” Applied Surface Science, vol. 256, no. 11, pp. 3380–3385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Zhou, J. Lv, L. K. Guo et al., “Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites,” Applied Surface Science, vol. 258, no. 16, pp. 6136–6141, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. G. X. Du, R. F. Zuo, L. F. Mei, J. H. Liao, and W. J. Guo, “Surface modification of diatomite by silane coupling agent and its effect on the reinforcing efficiency of NB/SBR blend,” Rare Metal Materials and Engineering, vol. 42, pp. 412–417, 2013 (Chinese). View at Google Scholar
  8. Y. Liu, C. Ge, M. Ren et al., “Effects of coating parameters on the morphology of SiO2-coated TiO2 and the pigmentary properties,” Applied Surface Science, vol. 254, no. 9, pp. 2809–2819, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Zhang, H. Yin, A. Wang et al., “Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties,” Applied Surface Science, vol. 257, no. 4, pp. 1351–1360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-X. Guo, K.-L. Lin, Z.-S. Zheng, F.-B. Xiao, and S.-X. Li, “Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light,” Dyes and Pigments, vol. 92, no. 3, pp. 1278–1284, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. X. F. Hou, H. Ding, Y. X. Zheng, and M. M. Wang, “Preparation and characterisation of amorphous silica/anatase composite through mechanochemical method,” Materials Research Innovations, vol. 17, pp. 234–239, 2013. View at Publisher · View at Google Scholar
  12. X. Wang, Z. Hu, Y. Chen, G. Zhao, Y. Liu, and Z. Wen, “A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon,” Applied Surface Science, vol. 255, no. 7, pp. 3953–3958, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. An, S. Peng, and Y. Sun, “Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst,” Advanced Materials, vol. 22, no. 23, pp. 2570–2574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F.-T. Li, Y. Zhao, Y. Liu, Y.-J. Hao, R.-H. Liu, and D.-S. Zhao, “Solution combustion synthesis and visible light-induced photocatalytic activity of mixed amorphous and crystalline MgAl2O4 nanopowders,” Chemical Engineering Journal, vol. 173, no. 3, pp. 750–759, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. C. Castillo, A. Heel, T. Graule, and C. Pulgarin, “Flame-assisted synthesis of nanoscale, amorphous and crystalline, spherical BiVO4 with visible-light photocatalytic activity,” Applied Catalysis B, vol. 95, no. 3-4, pp. 335–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Wang, S. Min, Y. Han, and L. Feng, “Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized TiO2 composite photocatalysts,” Superlattices and Microstructures, vol. 48, no. 2, pp. 170–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. A. Le, L. T. Linh, S. Chin, and J. Jurng, “Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon,” Powder Technology, vol. 225, pp. 167–175, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. R.-J. Wu, C.-C. Chen, C.-S. Lu, P.-Y. Hsu, and M.-H. Chen, “Phorate degradation by TiO2 photocatalysis: parameter and reaction pathway investigations,” Desalination, vol. 250, no. 3, pp. 869–875, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Wang, F. Wu, X. Zhang, M. Luo, and N. Deng, “Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions,” Journal of Hazardous Materials, vol. 133, no. 1–3, pp. 85–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Natarajan, T. S. Natarajan, H. C. Bajaj, and R. J. Tayade, “Photocatalytic reactor based on UV-LED/TiO2 coated quartz tube for degradation of dyes,” Chemical Engineering Journal, vol. 178, pp. 40–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Applied Catalysis B, vol. 31, no. 2, pp. 145–157, 2001. View at Publisher · View at Google Scholar · View at Scopus