Table of Contents Author Guidelines Submit a Manuscript
Advances in Materials Science and Engineering
Volume 2014, Article ID 409086, 5 pages
http://dx.doi.org/10.1155/2014/409086
Research Article

Degradation of Tetracycline by Birnessite under Microwave Irradiation

School of Material Sciences and Technology, China University of Geosciences, Beijing 100083, China

Received 19 June 2014; Revised 14 August 2014; Accepted 14 August 2014; Published 2 September 2014

Academic Editor: Ying Li

Copyright © 2014 Meng Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Daughton and T. A. Ternes, “Pharmaceuticals and personal care products in the environment: agents of subtle change?” Environmental Health Perspectives, vol. 107, supplement 1, p. 598, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Chen, C. Hu, J. Qu, and M. Yang, “Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 197, no. 1, pp. 81–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Miyata, I. Ihara, G. Yoshid, K. Toyod, and K. Umetsu, “Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry,” Water Science and Technology, vol. 63, no. 3, pp. 456–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. B. A. Boxall, D. W. Kolpin, B. Halling-Sørensen, and J. Tolls, “Are veterinary medicines causing environmental risks?” Environmental Science and Technology, vol. 37, no. 15, pp. 286A–294A, 2003. View at Google Scholar · View at Scopus
  5. A. Hartmann, A. C. Alder, and T. Koller, “Identification of fluoroquinolone antibiotics as the main source of umuc genotoxicity in native hospital wastewater,” Environmental Toxicology and Chemistry, vol. 17, no. 3, pp. 377–382, 1998. View at Google Scholar
  6. A. L. Batt, I. B. Bruce, and D. S. Aga, “Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges,” Environmental Pollution, vol. 142, no. 2, pp. 295–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Yang, P. Wang, S. J. Shi, and Y. Liu, “Microwave enhanced Fenton-like process for the treatment of high concentration pharmaceutical wastewater,” Journal of Hazardous Materials, vol. 168, no. 1, pp. 238–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Hill and T. R. Merchant, “Modelling microwave heating,” Journal of Applied Mathematical Modelling, vol. 20, no. 1, pp. 3–15, 1996. View at Google Scholar
  9. A. Patra, D. K. Bisoyi, P. K. Manda, and A. K. Singh, “Effect of microwave radiation on the macromolecular, morphological and crystallographic structures of sisal fiber,” Applied Physics A: Materials Science and Processing, vol. 112, no. 4, pp. 1063–1071, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. H. A. Elazab, S. Moussa, B. F. Gupton, and M. S. El-Shall, “Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation,” Journal of Nanoparticle Research, vol. 16, no. 7, article 2477, 2014. View at Publisher · View at Google Scholar
  11. Y. Su, L.-C. Wang, Y.-M. Liu, Y. Cao, H.-Y. He, and K.-N. Fan, “Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides,” Catalysis Communications, vol. 8, no. 12, pp. 2181–2185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Kang, M. Zhang, Z.-H. Liu, and K. Ooi, “IR spectra of manganese oxides with either layered or tunnel structures,” Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, vol. 67, no. 3-4, pp. 864–869, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Turner and P. R. Buseck, “Todorokites: a new family of naturally occurring manganese oxides,” Science, vol. 212, no. 4498, pp. 1024–1027, 1981. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Villalobos, I. N. Escobar-Quiroz, and C. Salazar-Camacho, “The influence of particle size and structure on the sorption and oxidation behavior of birnessite: I. Adsorption of As(V) and oxidation of As(III),” Geochimica et Cosmochimica Acta, vol. 125, pp. 564–581, 2014. View at Google Scholar
  15. J. G. Parra, V. C. Cala Rivero, and T. I. Lopez, “Forms of Mn in soils affected by a forest fire,” Science of the Total Environment, vol. 181, no. 3, pp. 231–236, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Post, “Manganese oxide minerals: crystal structures and economic and environmental significance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3447–3454, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Z. Lv, R. Z. Zhang, L. N. Xu, B. C. Luo, and Y. H. Zhang, “Composition and ionic change capacity variation of surfactant-intercalated MgFe-layered double hydroxides in the one step synthesis,” Journal of Sol-Gel Science and Technology, vol. 69, no. 1, pp. 26–32, 2014. View at Google Scholar
  18. T. G. Spiro, J. R. Bargar, G. Sposito, and B. M. Tebo, “Bacteriogenic manganese oxides,” Accounts of Chemical Research, vol. 43, no. 1, pp. 2–9, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Hu, Y. H. Zhang, F. Z. Lv et al., “Organic pollution removal from TNT red water using Cu-Impregnated activated coke,” Water, Air, & Soil Pollution, vol. 225, no. 4, pp. 1–10, 2014. View at Publisher · View at Google Scholar
  20. W.-T. Jiang, P.-H. Chang, Y.-S. Wang et al., “Removal of ciprofloxacin from water by birnessite,” Journal of Hazardous Materials, vol. 250-251, pp. 362–369, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Colaizzi and P. R. Klink, “pH-Partition behavior of tetracyclines,” Journal of Pharmaceutical Sciences, vol. 58, no. 10, pp. 1184–1189, 1969. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Sassman and L. S. Lee, “Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange,” Environmental Science and Technology, vol. 39, no. 19, pp. 7452–7459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. P. di Leo, M. D. R. Pizzigallo, V. Ancona et al., “Mechanochemical transformation of an organic ligand on mineral surfaces: the efficiency of birnessite in catechol degradation,” Journal of Hazardous Materials, vol. 201-202, pp. 148–154, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Y. Wang, L. F. Mei, X. B. Xing et al., “Mechanism and process of degradation of methylene blue under microwave induced manganese xoides,” Applied Catalysis B: Environmental, vol. 211, pp. 160–161, 2014. View at Google Scholar
  25. L. X. Yang, Y. J. Zhu, and G. F. Cheng, “Synthesis of well-crystallized birnessite using ethylene glycol as a reducing reagent,” Materials Research Bulletin, vol. 42, no. 1, pp. 159–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Zhu, Q. Li, W. Bi et al., “Ultra-rapid microwave-assisted synthesis of layered ultrathin birnessite K0.17MnO2 nanosheets for efficient energy storage,” Journal of Materials Chemistry A, vol. 1, no. 28, pp. 8154–8159, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Yuping, M. He, L. Xiaogang, L. Shunhua, and J. Zhijiang, “The microwave electromagnetic characteristics of manganese dioxide with different crystallographic structures,” Physica B: Condensed Matter, vol. 405, no. 7, pp. 1826–1831, 2010. View at Publisher · View at Google Scholar · View at Scopus